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Abstract—Data structures used in associated rule mining 

algorithms are presented in terms of Sperner systems. This helps 

to minimize the necessary algorithmic resource, also making 

transparent the data sets and their interrelations. 
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I. INTRODUCTION  

Let 𝑓  be an arbitrary monotone Boolean function.  We 

notice that 𝑍(𝑓) ∪ 𝑂(𝑓), the union of all upper zeros and 

lower ones of 𝑓 is the only deadlock resolving set 𝐺(𝑓) of 

function 𝑓. All necessary terms and definitions can be found 

in [2, 4,10-14]. Thus, in order to determine the values of 

function 𝑓  at all points of 𝐸𝑛  [4-5,8,11,20], knowing its 

monotonicity, it is sufficient to determine them only at the 

points of the deadlock resolving set 𝐺(𝑓) [12], or in some 

interpretable area of its extension.  

Let us transfer these well-known concepts of Boolean domain 

to the domain of partially defined Boolean functions. Partially 

defined Boolean function 𝑓 is determined on ℎ + 𝑙 vertices of 

the 𝑛-dimensional unit cube 𝐸𝑛 , ℎ + 𝑙 < 2𝑛 . 𝑓  is a part of 

some function 𝑓 but the complete function 𝑓 is unknown, and 

such functions can be different. ℎ vertices correspond to a set 

𝐻 ⊆ 𝒩𝑓 of vertices that accept value “one”, and 𝑙 vertices of 

the set 𝐿 ⊆ 𝒩𝑓 ̅ accept “zero” value (so they are out of the set 

𝒩𝑓 ). The reminder part 𝐸𝑛 − 𝐿 − 𝐻 of vertices is the area of 

indeterminedness of 𝑓, which means that the values of 𝑓 are 

not determined or, equivalently, that they are defined, but we 

do not know these values. When 𝑓 belongs to a specific class 

of Boolean functions, then the sets 𝐻  and 𝐿  cannot be 

arbitrary. E.g., for monotone 𝑓  or 𝑓 , 𝐻  will be upward 

monotone and 𝐿 will be downward monotone. The two sets 

𝐻 = 𝒩�̌�  and 𝐿 = 𝒩
�̌� ̅

 might be given with the help of two 

Sperner systems:  𝑍(𝑓) and 𝑂(𝑓). 𝑍(𝑓) is the set of all upper 

zeros of 𝑓. Then 𝐿 is the set of all vertices of 𝐸𝑛 majored by 

at least one of the vertices of 𝑍(𝑓). Similarly, 𝑂(𝑓) is the set 

of all lower ones of 𝑓, and the set 𝐻 must include all vertices 

of 𝐸𝑛 that are majoring at least one vertex of 𝑂(𝑓). And the 

union 𝐺(𝑓) = 𝑍(𝑓) ∪ 𝑂(𝑓)  is the only deadlock-resolving 

set of a partially defined monotone function 𝑓 (in its part 𝐻 ∪

𝐿 in initial definition). 

II. ASSOCIATION RULE MINING DATASET REPRESENTATION BY 

SPERNER SYSTEMS 

      The partial definedness situation of a function may have 

different causes. In pattern recognition, the learning set is a 

partially defined function 𝑓 because of the natural limitation 

of information about the subject area and its samples. On the 

contrary, indefiniteness is a temporal situation in the oracle-

based function reconstruction, being a current result of the 

algorithm. Consider the step 𝑘 of the association rule mining 

(ARM) algorithm APRIORI [1-3]. 𝐿𝑘−1  be the list of large 

𝑘 − 1 itemsets (frequent sets) at the beginning of the 𝑘-th 

step, and 𝑓𝑘−1 be the partially defined function, formed at that 

stage. Zeros of 𝑓𝑘−1  are represented by the sets 𝐿𝑘−𝑖 , 𝑖 =

1,2, … on layers. Correspondingly, we will denote attributes 

of 𝑓𝑘−1 by 𝐿𝑘−1, 𝐻𝑘−1, 𝑍(𝑓𝑘−1) and 𝑂(𝑓𝑘−1). 

 

Lemma. For the target function 𝑓, at the beginning of 

the 𝑘-th step of the frequent sets growing 

procedure, the following conditions hold: 

𝐿𝑘−1 ⊇ 𝐸𝑘−1
𝑛 ∩ 𝑍(𝑓) and 𝐸𝑘−1

𝑛 − 𝐿𝑘−1 ⊆

𝐻 , where 𝐸𝑘−1
𝑛  denotes the (𝑘 − 1) -th 

layer of 𝐸𝑛. 

 

 

(1) 

 

We left the proof as an exercise. The idea behind the Lemma 

says that 𝐿𝑘−1  is not a final but a temporary knowledge. 

APRIORI uses the following principle of frequent sets 

candidate generation. In searching candidates, having the set 

𝐿𝑘−1 at the beginning of the step 𝑘, it considers an arbitrary 

element 𝛼 ∈ 𝐸𝑘
𝑛. All neighbours of 𝛼 from 𝐸𝑘−1

𝑛  are obtained 

from 𝛼 by zeroing one of its unit coordinates. Let us do that 

for the last two unit coordinates. We obtain 2 vertices with 

common 𝑘 − 2  prefix. This is the vertex pair used in 

candidate 𝛼 generation. This is a weak check for candidate 𝛼. 

The full check requires two check parts: check that all 𝑘 − 1 

layer neighbours of 𝛼  belong to 𝐿𝑘−1 , and check of the 

required support level at vertex 𝛼 . The second check is 
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stronger but the first check is necessary to form the support 

computation samples set. These samples area must be at least 

𝐿𝑘 , which is unknown at that stage, but the smaller area is 

preferable due to forthcoming costly computations of support 

values.  

 

Denote by 𝑍(𝑓𝑘) and 𝑂(𝑓𝑘),  correspondingly, the sets of 

upper zeroes and lower ones of function 𝑓 at the step 𝑘 of 

APRIORI. When APRIORI finishes its work at some step 𝑘0, 

then it must be 𝑍(𝑓𝑘0
) = 𝑍(𝑓) and 𝑂(𝑓𝑘0

) = 𝑂(𝑓). Sperner 

systems 𝑍(𝑓𝑘) and 𝑂(𝑓𝑘) define nested monotone Boolean 

functions that converge to the frequent itemset function. We 

also will consider complementary Sperner systems �́�(𝑓) and 

�́�(𝑓)  to 𝑍(𝑓)  and 𝑂(𝑓) . In general, �́�(𝑓) = 𝑂(𝑓)  and 

�́�(𝑓) = 𝑍(𝑓). But for partially defined functions these sets 

are different.  

 

The trade-off between the number of candidates and the 

number of elements of computation of the support value is 

complexity critical parameter in ARM. Basically, candidate 

generation is a process in RAM, so that these sets can be 

analyzed and minimized in their complete form. When 

candidate set is determined, then an additional I-O of 

transaction database is required for computing support values. 

In this context, number of candidates is an important but not 

critical value. It is clear that this trade-off problem cannot 

have an unambiguous solution and because of this it has been 

the subject of a number of studies [6-7,15-19,21]. The 

partitioning algorithm [19], for example, allows the 

construction of an extended set of candidates by passing this 

set to the one last step of reading database, with counting 

supports. Another approach - clustering [18,21] also builds an 

extended set of candidates, but this is based on minimizing the 

number of iteration steps when constructing candidates, trying 

to analyze and better use the information from the set Lk−1. 

 

Consider an arbitrary subset ∆⊆ Е𝑝
𝑛 . We call an interior 𝑞-

point of elements of the set ∆ all-those-vertices 𝑎 ∈ Е𝑞
𝑛, for 

which all vertices of the layer Е𝑝
𝑛 comparable to them, belong 

to the set ∆. Similarly, 𝑎 ∈ Е𝑞
𝑛 is a shadow 𝑞-point for ∆, if at 

least one vertex of the layer Е𝑝
𝑛 comparable to 𝑎 belongs to the 

set ∆.  Insert a notation to these concepts. For an arbitrary ∆⊆

Е𝑝
𝑛  we denote by 𝐼𝑙(∆) the set of all interior points of the 

layer 𝑝 + 𝑙 of 𝐸𝑛, determined by the set ∆. Similarly, 𝑆𝑙(𝐴) is 

the set of all shadow vertices of the layer 𝑝 + 𝑙 of 𝐸𝑛 that are 

determined by the set ∆. 𝑙 is an integer, and when 𝑙 = 0, then 

𝐼𝑙(∆) = 𝑆𝑙(∆) = ∆ . For given 𝑝  the value domain of 𝑙  is 

determined by relation −𝑝 ≤ 𝑙 ≤ 𝑛 − 𝑝. 

According to these definitions, the 𝑘-th step of APRIORI can 

be presented by the following picture (Figure1) 

 

 
Figure1 

Interval composed of all vertices of type 𝛼𝑘 plus all vertices 

of type 𝛽𝑘  corresponds to the real set of candidate itemsets on 

layer 𝑘: all their 𝑘 − 1 subsets are large subsets, they belong 

to 𝐿𝑘−1. The part of vertices 𝛽𝑘  of this interval consists of low 

support elements so that they will not be included into the 𝐿𝑘. 

Interval of vertices γ𝑘 consists of those vertices, that reduced 

in 2 last elements become an item of 𝐿𝑘−1. They are members 

of the APRIORI candidates set, but the collection of their 𝑘 −

1 subsets have intersection with 𝐸𝑛−1 − 𝐿𝑘−1 , so that their 

support can’t be satisfactory and these points can’t be included 

in 𝐿𝑘 as well. The reminder interval δ𝑘 is not part of the set of 

candidates. 

 

Analyze the diagram in terms of lower ones and upper zeros. 

Consider 𝐼1(𝐿𝑘−1) and its parts 𝛼𝑘  and β𝑘 . α𝑘 + β𝑘 + γ𝑘 =

C𝑘 , and α𝑘 = 𝐿𝑘 . 𝑆−1(α𝑘)  is the set of all large 𝑘 − 1 

itemsets that are covered by the new large 𝑘 itemsets. While 

the elements of 𝛼 now have to be included into the set 𝑍(𝑓𝑘), 

the vertices of 𝑆−1(α𝑘), being upper zero at the step 𝑘 − 1 

have to be eliminated because they are covered by elements 

of 𝛼𝑘.  

 

Theorem 1. In APRIORI algorithm the set 𝑍(𝑓𝑘) can 

be obtained by the recurrent formula 

𝑍(𝑓𝑘) = 𝑍(𝑓𝑘−1) − 𝑆−1(α𝑘) + 𝛼𝑘. 

 

 

(2) 

  

In term (𝛼𝑖 − 𝑆−1(α𝑖) the two compounds belong to different 

layers. This term might be applied to the set  𝑍(𝑓𝑖−1), where 

the part on the layer 𝑖  is reduced by 𝑆−1(α𝑖), and the new 

layer 𝑘  is involved into the process adding the set 𝛼𝑖 . To 

compute this formula it is necessary to determine the sets 𝛼𝑖, 

and the required technique is demonstrated in Figure 1 above. 

Computation involves several transformations into the 

shadows and interior vertices, and computation of supports at 

the same time. 𝑂(𝑓𝑘) is more straightforward: 

 

Theorem 2. In APRIORI algorithm the set 𝑂(𝑓𝑘) can 

be obtained by the recurrent formula 

𝑂(𝑓𝑘) = 𝑂(𝑓𝑘−1) + 𝛽𝑘 . Alternatively, 

𝑂(𝑓𝑘) = (E1
𝑛 − 𝐿1) + ∑ 𝛽𝑖

𝑘
𝑖=2 . 

(3) 
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III. CONCLUSION 

      Concluding the points (1), (2), (3), it should be mentioned 

that APRIORI, in a slight modification, may compute and 

return the sets 𝑍(𝑓𝑘) and 𝑂(𝑓𝑘) of upper zeroes and lower 

ones, which in step 𝑘  are wider and narrower than the 

corresponding final sets. Extension of information of 𝑍(𝑓𝑘) 

and 𝑂(𝑓𝑘) into the final sets of frequencies is straightforward 

by one read of the database, passing the set out of monotone 

domains determined by 𝑍(𝑓𝑘) and 𝑂(𝑓𝑘). 
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