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Abstract—A collection (A1, . . . , Ak) of subsets of a group
G is called k-solution-free if the equation x1 + · · · + xk = 0
has no solution in (A1, . . . , Ak), where x1 ∈ A1, . . . , xk ∈ Ak.
The asymptotic behavior for the logarithm of the number of
k-solution-free collections in Abelian groups is obtained.
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I. INTRODUCTION

Let G be an Abelian group of order n, let A1, . . . , Ak be
subsets of the group G, and let k ≥ 3 be a natural number.
A collection of sets (A1, . . . , Ak) is called a k-solution-free
((k, l)-SFC) if the equation

x1 + · · ·+ xk = 0 (1)

has no solution in (A1, . . . , Ak), where x1 ∈ A1, . . . , xk ∈
Ak. The family of all k-SFCs in G will be denoted by Sk(G).

Let k and l be nonnegative integers such that k + l ≥ 3.
A subset A ⊆ G is called a (k, l)-sum-free set ((k, l)-SFS) if
the equation x1 + . . . + xk = y1 + . . . + yl has no solutions
in the set A. The family of all (k, l)-SFSs in G will be
denoted by SFk,l(G). A (2, 1)-sum-free set is simply called
a sum-free set (a SFS). Given natural numbers m and n, by
[m,n] we denote the set of all natural numbers x such that
m ≤ x ≤ n. In 1988, Cameron and Erdös [1] conjectured
that SF2,1([1, n]) = O(2n/2). They proved, in particular, that
there exist constants c0 and c1 such that |SF2,1([[n/3], n])| ∼
c02n/2 for even n and |SF2,1([[n/3], n])| ∼ c12n/2 for
odd n. Calkin [2] and independently Alon [3] showed that1

lim sup
n→∞

2
n log |SF2,1([1, n])| ≤ 1. Sapozhenko [4] and inde-

pendently Green [5] proved the Cameron-Erdös conjecture and
found the asymptotic behavior of the number of SFSs in the
interval [1, n]. In particular, it was shown that |SF2,1([1, n])| ∼
c(n)2n/2, where the constant c(n) depends on the parity of n.
In 1991, Alon [3] showed that, for any ε > 0, the number of
SFSs in an arbitrary finite group of order n is at most 2n/2+εn

for all sufficiently large n. Later this result was refined for
various subclasses of finite Abelian groups. In this way, in
2002, Sapozhenko [6] and independently Lev, Luczak, and
Schoen [7] found the asymptotic behavior of the maximum

1Here and below, log x = log2 x

possible number of SFSs for finite Abelian groups that contain
at least one subgroup of index 2. By Zn we shall denote a
cyclic group of order n. In 2002, Lev and Schoen [8] showed
that if p is a sufficiently large prime number, then

2b(p−2)/3c(p− 1)(1 +O(2−ε1p)) ≤ |SF2,1(Zp)| ≤ 2p/2−ε2p,

where ε1 and ε2 are positive constants.
In 2005, Green and Ruzsa [9] used Fourier trans-

forms to obtain asymptotics of the logarithm of the num-
ber of SFSs in finite Abelian groups. They showed that
log |SF2,1(G)| ∼ µ2,1(G), for any finite Abelian group G,
where µ2,1(G) is the maximal cardinality of an SFS in G.
In 2009, Sapozhenko [10] found the asymptotic behavior of
the number of SFSs in groups of prime order.

At the same time, much effort has been devoted to exten-
sions of the Cameron-Erdös problem. In particular, the number
of (k, l)-SFSs was studided.

In 1996, Calkin and Taylor [11] proved that there exists a
constant Ck, k ≥ 3, such that |SFk,1([1, n])| ≤ Ck2(k−1)n/k.
In 1998, Bilu [12] showed that |SFl+1,l([1, n])| = (1 +
ō(1))2b(n+1)/2c), and Calkin and Thomson [13] established
that SFk,l([1, n]) ≤ Ck,l2

(k−l)n/k, for some constant Ck,l
with k ≥ 4l − 1.

In 2000, Schoen [14] found the asymptotic behavior of the
number of (k, l)-SFSs in the interval [1, n] of natural numbers
under some constraints on k and l. In 2003, Lev [15] estimated
from above the number of (k, l)-SFSs in the interval [1, n] of
natural numbers. Sargsyan [16] found the asymptotic behavior
of the logarithm of the number of (k, l)-SFSs for an arbitrary
Abelian group. He showed that | log |SFk,l(G)| − µk,l(G)| <
εn, for any ε > 0 all sufficiently large n, where µk,l(G) is
the maximum cardinality of a (k, l)-SFS in G.

We set

νk(G) = max
(A1,...,Ak)∈Sk(G)

|A1 ∪ · · · ∪Ak|.

In the present paper we prove the following result.
Theorem 1: Let G be an Abelian group of order n and let

k ≥ 3 be a natural number. Then

log |Sk(G)| = νk(G) + ō(n),

as n→∞.
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II. GRANULATION

Definition 1: An L-granule of coset type is the union of
cosets of a group G modulo some subgroup of order at least
L.

Definition 2: Suppose that L is an integer, d ∈ G, and
also ord(d) ≥ L, where ord(d) is the order of d. Let H be
the subgroup in G generated by d. Partition each coset of H
into bord(d)/Lc progressions of the form

{
x+ id

∣∣ 0 ≤ i ≤
L− 1

}
and one “remainder” set of size less than L. For each

d ∈ G, fix one of such partitions. The union of the so-obtained
progressions (which does not include the “remainder” sets) is
called an L-granule of progression type.

Remark 1: Note that, in the definition of an L-granule
of coset (progression) type, the union of arbitrary cosets
(progressions) is taken.

The following lemmas can be found in [ [9], p. 166, Lemmas
3.3 and 3.4]:

Lemma 1: Suppose that n is a sufficiently large natural
number, G is an Abelian group of order n, and L ≤

√
n.

Then G contains at most 23n/L L-granules of both types (of
progression and coset types).

Lemma 2: Suppose that n is a sufficiently large natural
number, M is a set of size n, and ρ is a real number that is
less than some absolute constant. Then the number of subsets
in M of size at most ρn, is at most 2n

√
ρ.

The following is proved in [17]:
Theorem 2: Let k ≥ 3 and let A1, . . . , Ak be subsets in

an Abelian group G of order n such that there exist o(nk−1)
solutions to the equation x1 + · · · + xk = 0 for xi ∈ Ai,
i = 1, . . . , k. Then there exist subsets A′1, . . . , A

′
k such that

A′i ⊆ Ai, |Ai \ A′i| = o(n), and there are no solutions to
x1 + · · ·+ xk = 0 for xi ∈ A′i.

Lemma 3 (Granulation): Let n be a sufficiently large
natural number, G be an Abelian group of order n, and k ≥ 3
be a natural number, (A1, . . . , Ak) ∈ Sk(G), let 0 < ε < 1/2,
and let L,L′ be two positive numbers satisfying the inequality

n > L′ (4L/ε)
k242k+1ε−2(k+1)

.

Then there exist subsets A′1, . . . , A
′
k ⊆ G such that

(i) A′1, . . . , A
′
k are either progression-type L-granules or

coset-type L′-granules;
(ii)

∣∣A1 \A′1
∣∣ ≤ εn, . . . , ∣∣Ak \A′k∣∣ ≤ εn;

(iii) (A′1, . . . , A
′
k) contains at most εnk−1 solutions of equa-

tion (1).
Proof: Without proof.

III. THE NUMBER OF K-SOLUTION-FREE COLLECTIONS IN
AN ABELIAN GROUP

The following theorem proves the existence of a family of
granules.

Theorem 3: Let G be an Abelian group of large order
n.Then there exists a family F of collections (F1, . . . , Fk)
of subsets of the group G satisfying the following conditions:
(i) log |F| ≤ 2kn(k − 1)−1/2(log n)−(4k+6)−1

;

(ii) for each (A1, . . . , Ak) ∈ Sk(G) there exists a collection
(F1, . . . , Fk) ∈ F such that A1 ⊆ F1, . . . , Ak ⊆ Fk;

(iii) each collection (F1, . . . , Fk) ∈ F contains at most
nk−1(log n)−(2k+3)−1

solutions of equation (1).
Proof: We set L = L′ = blog nc and ε = (k +

1)−1(log n)−(2k+3)−1

. Note that, for a sufficiently large n,
the hypotheses of Lemma 3 are satisfied for such parameters.
So, for each collection (A1 . . . , Ak) ∈ Sk(G), using Lemma 3
we construct a collection of sets (A′1 . . . , A

′
k). We set F ={

(A1 ∪ A′1, . . . , Ak ∪ A′k)
∣∣ (A1 . . . , Ak) ∈ Sk(G)

}
. Hence

assertion (ii) holds automatically. Therefore, from assertion (ii)
of Lemma 3 it follows that the cardinality of the family F is
majorized by the number of collections (F1 . . . , Fk) such that,
for all i = 1, . . . , k, the set Fi is a union of an L-granule with
some subset of the group G of cardinality at most εn. So, from
Lemmas 1 and 2 it follows that log |F| ≤ k(3n/L + n

√
ε).

For sufficiently large n, this quantity is not greater than
2kn
√
ε = 2kn(k − 1)−1/2(log n)−(4k+6)−1

. This proves
assertion (i).

We next note that if an element is added to one of the sets
from the collection (F1, . . . , Fk) ∈ F , then in this set at most
nk−2 new solutions of equation (1) can appear. Hence from
assertion (iii) of Lemma 3 it follows that in each collection
(F1, . . . , Fk) ∈ F there are at most εnk−1 + εn · knk−2 =
nk−1(log n)−(2k+3)−1

solutions of equation (1).
Theorem 4: Let G be an Abelian group of order n and let

k ≥ 3 be a natural number. Then

log |Sk(G)| = νk(G) + ō(n),

as n→∞.
Proof: By Theorem 3, there exists a family F of collec-

tions of subsets (granules) of the group G satisfying conditions
(i)-(iii). Let (F1, . . . , Fk) ∈ F . Given a fixed (F1, . . . , Fk), it
follows from Theorem 2 with A1 = F1, . . . , Ak = Fk, that
there exist F ′1 ⊆ F1, . . . , F

′
k ⊆ Fk, such that |Fi \F ′i | = o(n),

i = 1, . . . , k, and (F ′1, . . . , F
′
k) ∈ Sk(G). An ordered collec-

tion (Q1, . . . , Qk) is called a ”subcollection” of the collection
(W1, . . . ,Wk), if Q1 ⊆ W1, . . . , Qk ⊆ Wk. Hence, since
log |F| = o(n) (assertion (i) of Theorem 3), we see that
the number of ”subcollections” of all collections from the
collection F , is at most 2|F

′
1∪···∪F

′
k|+o(n).

By assertion (ii) of Theorem 3, each collection from Sk(G)
is a ”subcollection” of some collection from the family F .
Therefore,

log |Sk(G)| = νk(G) + o(n),

as n→∞.
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