
 

 

 

Mariam Arutunian  

System programming 

department 
Russian-Armenian University  

Yerevan, Armenia 
arutunian@ispras.ru 

 

Hripsime Hovhannisyan 

System programming 

department 
Russian-Armenian University  

Yerevan, Armenia 
hr.hovhanisyan@ispras.ru  

 

Vahagn Vardanyan  

System programming 

department 
Russian-Armenian University  

Yerevan, Armenia 
vaag@ispras.ru 

 

Sevak Sargsyan  
System programming 

department 
Russian-Armenian University  

Yerevan, Armenia 
sevaksargsyan@ispras.ru

 

 

 

 

Shamil Kurmangaleev  

System programming 
department 

Institute for System Programming 
of the Russian Academy of 

Sciences 

Moscow, Russia 
kursh@ispras.ru 

Hayk Aslanyan 
System programming 

department 
Russian-Armenian University  

Yerevan, Armenia 
hayk@ispras.ru 

 
 

 
 
 
 

 

Abstract— Binary code comparison tools are widely used to 

analyze vulnerabilities, search for malicious code, detect copyright 

violations, etc. The article discusses the best three tools known at 

the time - BCC, BinDiff, Diaphora. They are based on static 

analysis of programs. The tools receive as input data two versions 

of the program in binary form and match their functions. The 

purpose of the article is to assess the quality of the tools. We 

developed a testing system to automatically determine the 

precision and recall of each instrument. F1 score on the developed 

testing system for BCC instrument is 85.6%, for BinDiff - 82.4%, 

for Diaphora - 64.7%.  

Keywords— binary code analysis, BCC, BinDiff, Diaphora 

I. INTRODUCTION 

Binary code comparison tools compare two versions of 
programs to determine their similarities and differences. The 
comparison can be done at the level of basic blocks, functions, 
or entire programs. Often the source code of a program is not 
available, thus binary code analysis has fundamental 
importance. 

Revealing the similarities and differences of executable files 
is a difficult task since the compilation process can remove 
(depending on optimizations) some information of the program 
including variable names, function names, and data structure 
definitions. Moreover, the resulting binary can be changed 
significantly when source code is compiled with different 
compilers and different optimizations, as well as, for the 
different target operating systems and architectures. 

Programs’ binary code comparison has a wide range of 
applications, such as bug detection, malicious program 

identification, automatic patch generation, patch analysis, 
software copyright infringement detection, etc. 

There are many works devoted to the analysis of program 
changes. This article provides an overview and comparison of 
BinDiff [1] [2], Diaphora [3], and BCC [4] tools, which are 
currently supported and are showing the best results. In order to 
evaluate and compare the tools, a method for a testing system is 
developed and implemented. 

II. BINARY CODE COMPARISON TOOLS OVERVIEW 

BinDiff tool (version 6) [1] [2] implements different metrics 
for function mapping. Metrics are calculated on control flow 
graphs and function call graphs. In their paper, the authors 
propose a method to calculate MD-index [5] hashes for graphs. 
Further MD-index is used to calculate metrics on those graphs. 
Two functions are matched if their metrics are equal and unique. 

Diaphora tool (version 2.0.3) [3] matches functions using 
various sets of heuristics on control flow graphs․ Heuristics are 
applied sequentially; if there are still unmached functions after 
applying some heuristics, another one is applied. 

BCC tool [4] is divided into two stages. At the first stage, 
function call graphs and program dependence graphs (PDG) are 
generated. At the second stage, functions are compared using the 
generated graphs. The algorithm, which matches functions 
consists of two main steps. Functions are first matched using a 
series of heuristics. Those functions, which were not matched 
using heuristics are matched using the algorithm for determining 
the maximum common subgraph of PDG. 

A Method to Evaluate Binary Code Comparison 

Tools 

CSIT Conference 2021, Yerevan, Armenia, September 27 - October 1

145



III. TEST SYSTEM SCHEME 

In order to evaluate binary code comparison tools, a method 
for a testing system is developed. Tools are evaluated by 
precision, recall, and F1 score. They are defined as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

where 𝑡𝑝 is true positive results count, i.e., function’s pairs 
count, which the tool detected and they are also in true matched 
pairs set of functions. Oppositely, 𝑓𝑝 is false positive results 

count, i.e., function’s pairs count, which the tool detected and 
they are not in true matched pairs set of functions. 𝑓𝑛  is 
function’s pairs count that tool has not detected, but should. 

The testing system consists of three parts - automatic test 
generation, running binary code comparison tools on the 
generated tests, and their evaluation using generated tests. 

Fig. 1 shows the scheme of automatic test generation. Two 
versions (not necessarily different) of the same program are used 
to generate tests. At first, the source code of both versions is 
compiled with debug information. Compilation can be done 
with different optimization flags. Debug information allows 
using the names of the functions. If two functions from the first 
and the second versions of the program have the same name, 
they are matched (true matched pairs of functions). Ideally, 
binary code comparison tools should find the same set of 
functions’ matches on the same inputs.   

In the second part of the testing system (Fig. 2), the binary 
of the second version is striped: symbols are removed from it 
(original function names are also removed) using the strip utility 
from coreutils [6]. Then the binary of the first version and the 
stripped binary are passed to a binary code comparison tool to 
get functions’ matches. 

The purpose of removing symbols from a binary file is to 
make the generated tests as close as possible to real examples, 
since such information is almost always not available in 
analyzing programs.  

Additionally, we get function matches between striped and 
original binaries of the program's second version. As after 
removing symbols from functions addresses stay the same, we 
match those functions using their addresses.  

The third part of the testing system (Fig. 3) evaluates binary 
code comparison tools. It uses information from previous parts 
to calculate precision, recall, and F1 score. 

The testing system automatically parses the results of the 
instruments and brings them to a single form. For each found 
pair of functions (𝑓, 𝑓′), the original name of 𝑓′ is restored using 
information about functions’ pairs between original and striped 
binaries of the second version. Let’s suppose the original name 

Compiler 1 Compiler 2 

Functions’ matchings based on 

their names 

Fig. 1. Automated test generation 

 

Source code of a 

program’s 1st version 

Source code of a 

program’s 2nd version 

 

Binary of a program’s 1st 

version with debug info 

 

Binary of a program’s 2nd 

version with debug info 

 

True matched pairs 

of functions 

Functions’ pairs between 

original and striped binaries 

of the second version 

Results comparison 

Fig.3. Calculation of tool’s precision, recall, and F1 score  

 

Functions’ pairs the 

tool found 

 

True matched pairs of 

functions 

Precision, recall, F1 score 

Binary of a program’s 2nd 

version with debug info 

 

Strip 

Binary code 

comparison tool 

Fig.2. Running binary code comparison tools on generated tests  

Binary of a program’s 1st 

version with debug info 

 

Binary of a program’s 

2nd version without 

debug info 

 

Functions’ pairs the 

tool found 

Matching using 

functions addresses 

Functions’ pairs between 

original and striped binaries 

of the second version 

146



of 𝑓′  is 𝑔 . If (𝑓, 𝑔)  is in the set of true matched pairs of 
functions, then the result is considered true positive; otherwise, 
it is a false positive. If there are results in true matched pairs of 
functions, that the tool didn’t detect, they are considered as false 
negatives. Precision, recall, and F1 score are calculated based on 
true positives, false positives, false negatives count. 

IV. RESULTS 

We obtained results using 105 programs included in coreutils set 

[6]. Two versions of the same program source code were passed 

to the testing system. Also, source files were compiled by g++ 

(version 9.2.1) [7] and clang++ (version 9.0.0) [8] compilers 
with different optimization flags for the x86-64 architecture. 

Results of BCC, BinDiff (version 6), and Diaphora (version 

2.0.3) tools are in Table 1. 

The tools’ precision and recall are lower if programs are 

compiled with different optimization flags. It shows that 

compilers generate extreamly different binary code in the case 

of different optimizations. Even the results with different 

compilers, but the same optimization are higher. 

We can see from the table that BCC tool’s results exceed 

competitors. The best accuracy shows Diaphora, but the recall 

of the tool is much smaller than the others’ recall. On average, 

F1 score for BCC is 85.6%, for BinDiff - 82.4%, for Diaphora - 

64.7%. Moreover, the difference between F1 scores is greater, 

when the difference between the versions of the analyzed 

programs is larger (there are many changes), or when they are 

compiled with different compilation flags. 

V. CONCLUSION 

The article presents a method to evaluate binary code 
comparison tools. These tools are chosen because they are 
supported until now, are widely used, and show the best results. 
The comparison was carried out on several coreutils’ programs. 
The results show that the precision, recall, and F1 score of the 
tools are high when the difference between two versions of the 
analyzed program is smaller, and when they are compiled with 
the same compiler optimizations. The results of the tools are 
competitive, but on average, BCC shows the best F1 score. 

ACKNOWLEDGMENT   

This work was supported by the RA Science Committee and 
Russian Foundation for Basic Research in the frames of the joint 
research project SCS 20RF-033 and RFBR 20-57-05002 
accordingly.  

REFERENCES 
 

[1]  T. Dullien and R. Rolles, "Graph-based comparison of executable 

objects," Symposium sur la Securite des Technologies de l’Information et 

des Communications, 2005.  

[2]  https://www.zynamics.com/bindiff.html. 

[3]  J. Koret. https://github.com/joxeankoret/diaphora. 

[4]  H. Aslanyan, A. Avetisyan, M. Arutunian, G. Keropyan, S. 

Kurmangaleev, and V. Vardanyan, "Scalable Framework for Accurate 

Binary Code Comparison," in 2017 Ivannikov ISPRAS Open Conference 

(ISPRAS), Moscow, 2017.  

[5]  T. Dullien, E. Carrera, S. Eppler, and S. Porst, "Automated attacker 

correlation for malicious code," DTIC Document, 2010. 

[6]  "Coreutils - GNU core utilities,"  https://www.gnu.org/software/coreutils/. 

[7]  "GCC, the GNU Compiler Collection,"  https://gcc.gnu.org/. 

[8]  "Clang: a C language family frontend for LLVM,"  https://clang.llvm.org/. 

 

 
 

V
e
r
si

o
n

 1
, 

c
o

m
p

il
e
r
, 

o
p

ti
m

iz
a

ti
o

n
s 

V
e
r
si

o
n

 2
, 

c
o

m
p

il
e
r
, 

o
p

ti
m

iz
a

ti
o

n
, 

st
r
ip

p
e
d

 

B
C

C
 p

re
c
is

io
n

 
(%

) 

B
C

C
 r

e
c
a

ll
 

(%
) 

B
in

D
if

f 
p

re
c
is

io
n

 (
%

) 

B
in

D
if

f 
re

c
a

ll
 

(%
) 

D
ia

p
h

o
r
a

 
p

re
c
is

io
n

 (
%

) 

D
ia

p
h

o
r
a

 
re

c
a

ll
 (

%
) 

8.30 

clang++ o0 

8.30 

clang++ o0 
98.8 98.3 98.8 97.9 98.3 75 

8.30 g++  

o0 

8.30 g++  

o0 
98.8 98.3 98.8 97.9 98.3 74.7 

8.30 

clang++ o2 

8.30 

clang++ o2 
97.2 85.6 98.3 85.9 97.5 59.2 

8.30 g++  

o2 

8.30 g++  

o2 
98.2 82.4 98.2 81.7 97.3 55.2 

8.30 

clang++ o0 

8.30 

clang++ o2 
79.3 67.4 72.2 61.5 93.1 34.3 

8.30 g++  

o0 

8.30 g++  

o2 
84.8 69.2 75.5 63.7 91.3 34.5 

8.30 

clang++ o2 

8.30 

clang++ o3 
90.7 81.2 86.6 76.6 97.2 41.2 

8.30 g++  

o2 

8.30 g++  

o3 
90 77 88.7 75.4 93.5 44.8 

8.30 g++  

o0 

8.30 

clang++ o0 
94.9 89.4 91.2 85.4 95.6 38.1 

8.30 g++  

o2 

8.30 

clang++ o2 
89.1 76.1 81.1 71 93.8 36.7 

8.30 g++  

o0 

8.30 

clang++ o2 
78.9 67.7 71.2 61.5 93 34.5 

8.29 g++ 

 o0 

8.30 g++ 

o0 
97.8 98.2 97.8 97.8 97.6 72.5 

8.29 g++ 

o2 

8.30 g++  

o2 
97 82.2 96.6 81.4 96.3 52.8 

7.6 g++ o0 
8.30 g++  

o0 
72.1 69.5 62.9 62.9 92.5 35.5 

7.6 

g++  

o2 

8.30 g++  

o2 
85.4 77.9 83.4 76.5 95.1 46.5 

Average 90.2 81.4 86.8 78.5 95.4 49.0 

TABLE I.  TOOLS RESULTS 

147


	I. Introduction
	II. Binary Code Comparison Tools Overview
	III. Test System Scheme
	IV. Results
	V. Conclusion
	Acknowledgment
	References


