

Modeling Ad-hoc Networks Using Reasoning

Agents

Elena Zamyatina

HSE University

Perm, Russia

e-mail: е_zamyatina@mail.ru

Yaroslav Kirillov
Perm State University

Perm, Russia

e-mail: kirillov6@mail.ru

Abstract—The paper presents a software tool for agent-based

simulation used to study ad-hoc networks and the results of a

simulation experiment, namely, the results of executing the SDR

routing algorithm. In addition, the issues of the implementation

of a reasoning (intelligent) agent are considered.

Keywords—simulation, agents, ad-hoc networks, routing

algorithms.

I. INTRODUCTION

Currently, there is a tendency to increase the number of

mobile telecommunication devices, such as laptops, tablets,

smartphones, etc. Wireless technologies are coming to the

fore for building computer networks based on the principles

of their self-organization. Such networks do not require any

additional infrastructure other than the computational nodes

themselves. In this case, all nodes take over the network

management functions. There is a need to research and

develop reliable and efficient protocols and algorithms,

including routing algorithms. Modeling, including simulation,

became the basis for the study of wireless and, in particular,

Ad-hoc networks, since the modeling environment allows one

to fully investigate such complex dynamic objects as mobile

networks, to study new protocols, algorithms for the

interaction of nodes. The use of Ad-hoc networks has several

advantages over traditional wireless networks due to: (a) the

ability to transmit data over long distances without increasing

the transmitter power; (b) resilience of the network to changes

in topology; (c) high speed of deployment. Thus, the problem

posed is really urgent, an extremely important task is to be

able to quickly and conveniently simulate the behavior of

various algorithms, including routing algorithms in Ad-hoc

networks.

There are a lot of simulation tools for the design and analysis

of computer networks (OMNET ++ [1], NS-2 [2], etc.). Most

of them are aimed at solving specific problems: some are more

suitable for designing a network, others for analyzing a

finished network. But for Ad-hoc networks, in addition to

design and analysis, you need to have tools that allow you to

work with graphs, with operations on them. Indeed, the

dynamic graph is the mathematical model of Ad-hoc

networks. The fact is that in such networks, computational

nodes change their location in space, the distance between

them and their relative position change. This increases the

efficiency of the network: it becomes possible to have greater

coverage for the communication network [3], adaptation of

the network in conditions of uneven terrain, in the presence of

any obstacles to the movement of nodes [4,5]. The work

presents a system of computer-aided design and modeling of

computer networks TriadNS [6]. Unlike other simulation

tools, TriadNS has a set of standard routing algorithms and

allows you to add new algorithms to existing ones. In addition,

the TriadNS modeling system has linguistic tools that allow

one to build and explore graphs, supports the agent-based

modeling paradigm and offers linguistic tools for the

implementation of a reasoning (intelligent) agent.

Further, the work is structured as follows: the features of Ad-

hoc networks are briefly considered, then the DSR algorithm

is described in detail, the linguistic tools of the Triad language

and the results of the work of reasoning agents are presented.

II. AD-HOC NETWORKS AND THEIR FEATURES

So, the classical Ad-hoc network is a dynamic mobile

network without infrastructure, which is formed automatically

as a result of connections between a set of mobile nodes that

are located in a certain area; in this case, centralized

management is not required. In such a network, nodes are the

main component; each node can function as a router, defining

and maintaining routes to other nodes on the same network, as

well as to an end device (transmitter or receiver). This is in

contrast to wired networks and managed wireless networks, in

which routers (on wired networks) or access points (on

managed wireless networks) perform the task of controlling

data flow. The main characteristics of Ad-hoc networks are

operations with limited bandwidth and power consumption,

dynamic topology, and variable bandwidth links. Minimal

configuration and fast deployment allows the use of Ad-hoc

networks in emergency situations such as natural disasters and

military conflicts.

The routing algorithms in such networks face a number of

problems, including adapting to dynamic changes and limited

resources, and differ from the routing requirements in

infrastructure (wired LAN and WAN) networks, although

often the routing algorithms themselves remain the same, the

routing protocols, which are used in infrastructure networks,

turn out to be ineffective, and sometimes inoperable in the

conditions of wireless Ad-hoc networks. There are already

many routing protocols used in Ad-hoc networks. One of the

possible options for the classification of routing protocols is

based on the principles of their operation: (a) proactive; (b)

reactive; (c) hybrid one.

CSIT Conference 2021, Yerevan, Armenia, September 27 - October 1

211

A. Proactive protocols

The most widespread in self-organizing networks are

proactive (tabular) routing protocols. Such protocols

periodically send service messages over the network with

information about all changes in its topology. As a result, each

node in the network, based on this information, builds routes

to all other nodes and stores them in the routing table, from

where they are read when there is a need to send a message to

any destination. Most proactive protocols use Bellman-Ford

algorithms with some improvements, as well as Dijkstra's

algorithm for finding the shortest route.

The use of proactive routing is most effective in sedentary and

small self-organizing networks. With an increase in mobility

(dynamic topology) and the number of network nodes, the use

of proactive protocols leads to a rapid increase in network load

with service traffic and inefficient use of energy resources of

each node, which is a significant disadvantage when

organizing large, dynamic networks, such as mobile Ad-hoc

networks.

B. Reactive protocols

Reactive protocols create routes to specific nodes only

when it becomes necessary to transfer information from the

sending node to the receiving node. In such protocols, the

sending node broadcasts a request message for a route, which

must reach the receiving node. In response to such a message,

the receiving node sends an acknowledgment message, from

which the sender learns the necessary route and caches it.

When re-sending data to the receiving node, the route is

simply read from the cache. If the discovered route becomes

unavailable, the procedure for discovering and maintaining

the route is started. Reactive protocols are more efficient in

dynamically changing networks due to the reduction in the

amount of overhead transmitted over the network, since the

search for a route is carried out only when necessary.

However, there are a number of disadvantages: (a) increased

delay in finding the primary route associated with high

mobility and a large number of nodes; (b) finding a new path

in real time, which significantly limits reactive protocols for

video and voice transmission.

C. Hybrid protocols

Hybrid protocols have been proposed that combine the

mechanisms of proactive and reactive protocols in large,

mobile networks. Such protocols divide the network into

many subnets, within which a proactive protocol operates, and

the interaction between such subnets is based on reactive

routing protocols. This allows you to: (a) reduce the size of

the routing tables (store information about the subnet); to

reduce the amount of transmitted service information.

(throughout the network, since its main part is distributed only

within the subnet. Consider the reactive DSR algorithm, an

example of its modeling in the simulation system TriadNS.

III. ROUTING ALGORITHM DSR

Dynamic Source Routing (DSR) is a routing protocol for

mobile networks, an example of a MANET with a mesh

topology [5]. Explicit routing requires that the address of each

node be remembered between the source node and the

destination node during its lookup. So, let's call the chain of

addresses of intermediate nodes a route. The information

about the route is replenished with the addresses of the nodes

that process the broadcast requests of the source node. This

route is used to transmit packets. As a result, the routed

packets contain the address of each device they passed

through. Due to the explicit assignment of routes, all

information about them is continuously updated by mobile

nodes (as long as the data flow passes through them). This

avoids the need to periodically check the route. In any case,

the route is generated only if the request message has reached

the source node (the chain of nodes accumulated in the request

is added to the response). The DSR algorithm was designed to

reduce the traffic consumed by control packets on wireless

networks by eliminating table update messages. Updates to

tables are needed in algorithms that form routes using tables.

DSR assumes (like other reactive routing protocols) that

during route formation, a node establishes a route by

broadcasting a RouteRequest (RREQ) packet over the

network. The receiving node, when receiving a RouteRequest

packet, generates a response by sending a RouteReply (RREP)

packet back to the source node. The package stores the

traversed route.

A. RREQ request packet

Request initialization is performed when the source node

needs to communicate with the destination node, but the nodes

are not directly related to each other. The source node sends a

Route Request (RREQ) to its neighbors. The request has the

following structure: (a) broadcast_id - request identifier; (b)

source_id - source node identifier; (c) destination_id -

identifier of the destination node; (d) path - the path from the

source node to the destination node; (f) hop_count - number

of "hops". Each of the neighboring nodes receives a route

request (RREQ) and operates in one of 2 scenarios: (1) if the

node is a receiving node, then it returns a route response

packet (RREP - Route Reply); (2) if a node is not a receiving

node, then it forwards the RREQ packet to its neighbors.

B. RREP reply packet

If a node receives an RREQ packet and it already has a formed

route to the required destination node, then it sends a response

packet with this route (RREP) to the neighbor node that sent

the RREQ. The structure of the RREP packet is as follows: (a)

source_id - source node identifier; (b) destination_id -

identifier of the destination node; (c) path - path; (d)

hop_count - number of "hops". Intermediate nodes send the

first RREP to the source using cached entries from the path

field. Cached reverse paths will be destroyed on nodes that did

not receive the RREP packet.

C. RERR error packet

When a source node has a route to a destination node, it sends

a message to that node. Upon detecting a failure of one of the

nodes in the route, the previous (closer to the source) node

sends an error message in the route (RERR - Route Error). The

structure of the RERR package is the same as that of the RREP

package. If an error is detected, the hop_count field is filled

with a negative number. Let's give an example:

Node 1 needs to send a data packet to node 7. Suppose that

node 6 knows the current route to node 7. We also assume that

there is no other information regarding the route to node 7 in

the network (Fig. 1.).

212

Fig.1. Node 1 needs to send a data packet to node 7

Node 1 sends an RREQ packet to neighboring nodes (Fig.2.).

Fig.2. Demonstration of the structure of an RREQ packet and the process of

sending it.
Nodes 2 and 4 confirm that this is a new RREQ. But since

none of the nodes is a destination node, then these nodes send

forward the RREQ to all neighbors, having previously

increased the hop_count by 1 and adding their ID to the path

field (Fig. 3.).

Fig.3. Nodes send RREQ to neighbors

The RREQ reaches node 6, which knows the route to node 7

(Fig. 4). Nodes 3 and 5 will forward the RREQ packet, but the

recipients recognize the packet as a duplicate.

Fig.4. Nodes 3 and 5 will forward the RREQ packet

Because node 6 knows the path to node 7, then it sends an

RREP packet to node 4 (see Fig. 5.).

Fig.5. Node 7 sends an RREP packet to node

Node 4 verifies that this is a new route response and sends an

RREP packet to node 1 (Fig. 6).

Fig.6. Node 4 verifies a new route response and sends an RREP packet to

node 1

Now node 1 knows the path to node 7, consisting of 3 "hops",

and can immediately use it to forward data packets (Fig. 7.)

Fig.7. Now node 1 knows the path to node 7

IV. INTELLIGENT AGENTS

For modeling self-organizing computer networks, the agent-

based paradigm of simulation modeling is best suited, which

most adequately reflects the object under study. It is known

that an agent is a hardware or software entity that functions in

the external environment, interacting with it and with other

agents.

As already mentioned above, the TriadNS simulation tools,

developed by employees of the Perm and Krasnodar

Universities, have linguistic tools (Triad language) and

software that are designed to describe computer networks. A

computer network is represented by a graph, each vertex of

which is a computational node. To describe the behavior of a

computing node, a linguistic construction is used, which is

called routine. Essentially, the simulation model in TriadNS

is a network of interacting agents.

Currently, there is a tendency when devices operating in the

network become "intelligent": they can adapt to changing

environmental conditions, change their behavior, and make

decisions. Such software agents are usually called intelligent.

It is logical that the linguistic and software tools of simulation

systems should make it possible to describe the behavior of

intelligent agents using one or another knowledge model and

implementing inference mechanisms. In this paper, the

authors propose to use the rule-based model of knowledges.

Below are the syntax constructions of the Triad language for

an intelligent agent.

The syntax for a new type of routine is:

IRoutine <Name> (<Pole declaration>) [<Parameter

section>] {<Initialization section>}

{<Description of event and rules>} EndIRout

The syntax for describing the behavior of an intelligent agent

practically does not differ from the syntax of the usual routine

in the Triad language, with the exception of the keywords

IRoutine and EndIRout, which are responsible for the

beginning and end of this construction. The initialization

section describes the facts of the knowledge base. The fact has

the following format:

<Fact> :: = <Type> <Name> {: = <Value>};

A fact can have a predetermined meaning, or it can be

unknown and its meaning can be obtained as a result of the

operation of the inference mechanism. An example of a fact

description: Integer CurMonth: = 6.

Next, we will consider how one can describe the events and

rules by which the agent acts. In the section {<Description of

event and rules>}, one may receive and send messages (syntax

construction <event>). As in the production model of

knowledge, the inference engine considers the fulfillment of

each rule and performs certain actions: changing the value of

a fact, scheduling an event, etc.

To describe the rules, the syntax construction <Rule> has been

added to the Triad language:

213

<Rule> :: = Rule <Name> If <Condition> Then <Action>

EndIf {Reason <Cause>} EndRule.

In the description of the rule, you can indicate the reason (a

verbal description of why the rule worked), then, if the agent

executes the action of this rule, the reason for the execution of

the rule will be indicated. Let's consider an example:

Rule IsSummer

 If (CurMonth = 6) | (CurMonth = 7) | (CurMonth

= 8) Then

 Schedule StartVacation; (* We schedule

an event: a beginning of the vacations*)

 EndIf

 Reason “Now is a June, a July or an August”

EndRule

Оntologies are used to store the knowledge base in

TriadNS. To define new network elements (for Ad-hoc

networks) it is necessary to add new subclasses to the

existing ontology, namely, to ComputerNetworkNode

class. The behavior of computer network modeling objects

is determined by routines that are stored in the

ComputerNetworkRoutine class. To set the behavior for

the nodes of the network (routine), it is necessary to add a

new instances of the routine for each node represented at

Fig.8.

Fig. 8. Computer network structure

Intelligent agents, unlike reactive ones, have memory and

can perform complex reasoning. Since the DSR routing

protocol uses a route cache, the agent's memory is a key

parameter when choosing a route. Therefore, it is

intelligent agents that are suitable for the implementation

of this protocol.

The DSR protocol routine sends messages to a randomly

selected host on the network. When a node receives a

packet, its processing and further operation of the node

depends on the type of packet - RREQ, RREP or RERR.

The routine has several parameters: (a) NodeID - node

identifier; (b) DestinationID - the identifier of the

destination node, if it is necessary to send messages to a

specific node; (c) MaxCacheLen - the maximum capacity

of the route cache; (d) ReqPeriod - time interval after which

nodes send messages.

An example of describing the rules for implementing a

routine for DSR:

IRoutine

…

rule RREQ

 if (tmpRecMsg[0] = "RREQ") then

 schedule WorkRREQ in 0.01;

 endif;

 reason "Received RREQ packet";

endrule;

rule RREP

 if (tmpRecMsg[0] = "RREP") then

 schedule WorkRREP in 0.01;

 endif;

reason "Received RREP packet";

endrule;

…

Endrout

A fragment of the log with the results of the DSR algorithm

is shown below.

Fig.9. The results of smart agents functioning

V. CONCLUSION

The paper presents linguistic and software tools that can be

used for agent-based simulation of routing algorithms in

Ad-hoc networks. Syntax constructions for the

implementation of reasoning (intelligent) agents are

demonstrated and the results of a simulation experiment are

presented. The rule-based model of knowledge is used for

the implementation of intelligent agents.

ACKNOWKEDGEMENT

The reported study was funded by RFBR and the Krasnodar

Region Administration, project number 19-47-230003.

REFERENCES

[1] (2021) The OMNeT++ Community Site. [Online] Available:

http://www.omnetpp.org/

[2] (2021) NS-2 Community Site [Online] Available:
http://www.isi.edu /nsnam /ns /

[3] B.Mishra, D.Garg, P.Narang and V.Mishra. “Drone-surveillance

for search and rescue in natural disaster” Computer
Communications, vol. 156, pp. 1-10, 2020.

[4] B.Alzahrani, O.S.Oubbati, A.Barnawi, M.Atiquzzaman and

D.Alghazzawi “UAV assistance paradigm: State-of-the-art in
applications and challenges” Journal of Network and Computer

Applications, vol. 166, article 102706, 2020.
[5] R.Sharma, D.K.Lobiyal. “Proficiency Analysis of AODV, DSR

and TORA Ad-hoc Routing Protocols for Energy Holes Problem in

Wireless Sensor Networks” Procedia Computer Science, vol. 57,
pp. 1057-1066, 2015.

[6] A.I.Mikov, E.B.Zamyatina and R.A.Mikheev “Towards the

Flexibility of Software for Computer Network Simulation”,
Proceedings of the 18th International Conference on Computers,

vol. 1-2, pp. 391-397, 2014.

214

