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Abstract—When solving AI problems related to the study of
complex structured objects, a convenient tool for describing such
objects is the predicate calculus language. The paper presents
two algorithms for checking two elementary conjunctions of
predicate formulas for isomorphism (matches up to the names
of variables and the order of conjunctive terms). The first of
the algorithms checks for isomorphism elementary conjunctions
containing a single predicate symbol. In addition, if the formulas
are isomorphic, then it finds a one-to-one correspondence
between the arguments of these formulas. If all predicates are
binary, the proposed algorithm is an algorithm for checking two
directed graphs for isomorphism. The second algorithm checks
for isomorphism elementary conjunctions containing several
predicate symbols. Estimates of their time complexity are given
for both algorithms.

Keywords— Predicate formulas, isomorphism of predicate
formulas, complex structured object.

I. INTRODUCTION

When solving problems related to the study of complex
structured objects (CSO), a convenient tool for describing
such objects is the predicate calculus language. This way of
describing the CSO was proposed in the middle of the XX
century in the works [1], [2] and many other authors, and also
continues to be considered, for example, in [3].

The main problem of using the predicate calculus language
is the NP-hardness [4] or GI-hardness [5] of problems arising
in such descriptions of objects and classes of objects.

To decrease the computational complexity of such problems
the creation of a multilevel description of classes was proposed
in [6] and clarified in [7]. In these works, generalized predi-
cates were used to create a multilevel description of polyhedra,
which were obtained based on the specifics of the descriptions
of polyhedra. However, there remains the question of obtaining
generalized predicates for arbitrary classes of objects.

To solve this problem, the concept of the maximum common
property (MCP) of objects was introduced, in the initial
descriptions of which there are arbitrary properties of the
elements of the CSO and relationships between these elements.
The basic concept for the extraction of MCP is the concept of
isomorphism of elementary conjunctions of predicate formulas
[8].

Except constructing a multi-level description of objects,
MCP extraction can be used, for example, to construct an
ontology [9].

The first step to develop an MCP allocation algorithm is to
develop an algorithm for checking two elementary conjunc-
tions of predicate formulas for isomorphism (matches up to
the names of variables and the order of conjunctive terms).

This paper presents two algorithms for checking two ele-
mentary conjunctions for isomorphism, based on the algorithm
proposed in [10].

The first of the algorithms checks for isomorphism ele-
mentary conjunctions containing a single predicate symbol. In
addition, if the formulas are isomorphic, then it finds a one-to-
one correspondence between the arguments of these formulas.

Provided that all predicates are binary, the proposed algo-
rithm is an algorithm for checking two directed graphs for
isomorphism.

The second algorithm checks for isomorphism elementary
conjunctions containing several predicate symbols.

Estimates of their time complexity are given for both
algorithms.

II. NECESSARY DEFINITIONS

Definition 1. A complex structured object (CSO) is an
object ω = {ω1 . . . ωt} the elements of which have specified
properties (satisfy unary predicates) and are in specified
relationships (satisfy multi-place predicates) p1 . . . pn.

Definition 2. Description of a CSO S(ω) is an elementary
conjunction of atomic formulas with predicates p1 . . . pn,
which is the maximum in the number of literals, and is true
for ω.

Definition 3. Two elementary conjunctions of atomic for-
mulas of predicate calculus P (a1, . . . , am) and Q(b1, . . . , bm)
are called isomorphic

P (a1, . . . , am) ∼ Q(b1, . . . , bm),

if there is such an elementary conjunction R(x1, . . . , xm)
and substitutions of arguments ai1 , . . . , aim and bj1 , . . . , bjm
of formulas P (a1, . . . , am) and Q(b1, . . . , bm) accordingly,
instead of all occurrences of variables x1, . . . , xm of the
formula R(x1, . . . , xm), that the results of these substitutions
R(ai1 , ..., aim) and R(bj1 , ..., bjm) coincide up to the order of
literals with the formulas P (a1, . . . , am) and Q(b1, . . . , bm),
respectively.
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The resulting substitutions |x1
ai1

· · · xm
aim

1 and |x1

bj1
· · · xm

bjm
are

called unifiers of formulas P (a1, . . . , am) and Q(b1, . . . , bm)
with the formula R(x1, . . . , xm) respectively.

In the above definition, one could do without introducing
the formula R(x1, . . . , xm) into it, as is done in the definition
of isomorphic graphs. But, firstly, my mathematical education
does not allow me to substitute anything in the formula instead
of constants. Secondly, in the future, this formula will act
precisely as a formula with variables that sets the common
property of two CSO.

Note that the arguments of elementary conjunctions P and
Q can be both object variables and object constants. In addi-
tion, the concept of isomorphism of elementary conjunctions
of atomic formulas of predicate calculus differs from the
concept of equivalence of these formulas, because they can
have significantly different arguments. In fact, for isomorphic
formulas, there are such permutations of their arguments that
they define the same relation between these arguments.

Definition 4. An elementary conjunction that does not con-
tain constants is called a common property of two objects if it
is isomorphic to some subformules of each of the descriptions
of these objects.

Definition 5. An elementary conjunction that does not
contain constants is called a maximum common property
(MCP) of two objects if it is their common property with the
largest number of literals.

Definition 6. A string of the form χ(ai) = (n1, . . . , nk),
where nj is the number of occurrences of the variable ai as
the j-th argument of the literal is called a characteristic of an
argument ai in the elementary conjunction of literals with the
only one k-ary predicate symbol.

Definition 7. An ordered

• by the minimal non-zero number of occurrences of the
variable in the 1st, 2nd, ... , k-th place

• by the minimal non-zero number of occurrences of other
variables among a group with the same minimal non-zero
number of occurrences of a variable

string of the form χ(C) = (χ(ai1), . . . , χ(ain)), where n is
the number of variables in C is called a characteristic of
an elementary conjunction C of literals with the same k-ary
predicate symbol.

Theorem 1: [10] In order for two elementary conjunctions
of literals with the same predicate symbol to be isomorphic,
it is necessary that their characteristics are equal.

Definition 8. The number of arguments in the formula
that have this characteristic value is called a length of the
characteristic value.

When describing the algorithm for checking the isomor-
phism of two elementary conjunctions R and F containing a
single predicate symbol (moreover, the elementary conjunc-
tion R contains variables, and the elementary conjunction F
contains only constants), a structure mapping will be used. Let

1The notation P |x1
ai1

· · · xm
aim

is used to replace all free occurrences in the
formula P of variables x1, · · · , xm with constants a1, · · · , am respectively.

[xi1 , . . . , xik ] be a list of all variables with the same character-
istic in the formula R, [cj1 , . . . , cjk ] be a list of constants with
the same characteristic in the formula F . Then the structure
mapping has the form {[xi1 , . . . , xik ] : [cj1 , . . . , cjk ]}. That
is, each of these constants is possible for substitution in R
instead of any of these variables, and no other constant from
F is suitable for substitution in R.

More precisely, this structure is initially constructed as
follows: in a cycle by the values of the characteristics of
variables

— write out all the variables of the formula R having the
same characteristic value,

—write out all the constants of the formula F that have the
same characteristic value.

The structure mapping is a list of all pairs ordered in
ascending order of the lengths of the pairs

{[y] : [d], [w] : [c], [z, v] : [a, e], [x, u] : [b, f ]}.

Definition 9. A pair of subformulas R′ and F ′ of elementary
conjunctions R and F , respectively, is called contradictory if
there is a pair {[. . . xt, . . . ] : [. . . cr, . . . ]} in the structure
mapping’ for R′ and F ′, but in the structure mapping’ for R
and F a pair {[. . . xt, . . . ] : [. . . . . . ]} does not contain cr or
the pair {[. . . . . . ] : [. . . cr, . . . ]} does not contain xt.

III. ALGORITHM ISOM-1 FOR CHECKING ISOMORPHISM
OF TWO ELEMENTARY CONJUNCTIONS CONTAINING A

SINGLE PREDICATE SYMBOL

Let two elementary conjunctions of literals F1(a1, . . . , an)
and F2(b1, . . . , bn) with the same number of literals with a
single predicate symbol be given. To check them for isomor-
phism, the following algorithm is proposed.

1) Find the characteristics of elementary conjunctions
F1(a1, . . . , an) and F2(b1, . . . , bn).

2) If the characteristics do not coincide, then the formulas
are not isomorphic. The algorithm stops its run.

3) As a formula R(x1, . . . , xn) take the formula
F1(a1, . . . , an). The unifier of formulas R(x1, . . . , xn)
and F1(a1, . . . , an) is an identical substitution
λR F1

= |x1,...,xn
a1,...,an

.
4) For each value of the characteristics of the arguments

of the formulas R(x1, . . . , xn) and F2(b1, . . . , bn) cal-
culate its length.

5) Write out the argument lists for R(x1, . . . , xn) and
F2(b1, . . . , bn) having the same characteristic.

6) Fill in the mapping structure for R(x1, . . . , xn) and
F2(b1, . . . , bn).2

7) If in the mapping structure every pair has a length greater
than 1, then go to Item 14.
If there are both pairs with a length equal to 1 and pairs
with a length greater than 1, then go to Item 8.

2Because in the process of the algorithm run, some (and eventually all)
variables in the formula R(x1, . . . , xn) will be replaced with constants, then
in the further description of the algorithm, the arguments of this formula will
not be written out and we will simply write R

14



Otherwise, mapping contains only entries of the form
[xi] : [bj ] with a length equal to 1. This means that
the value for xi can only be bj . A unifier was found
for R(x1, . . . , xn) and F2(b1, . . . , bn) containing all
variables. The formulas are isomorphic. The algorithm
stops its run.

8) For each pair of mapping structure with the length 1 of
the form [xi] : [bj ] replace the variable xi in the formula
R with the constant bj .

9) If the formulas R and F2(b1, . . . , bn) coincide up to the
permutation of literals, then the formulas are isomorphic.
The algorithm stops its run.

10) Otherwise, divide each of the formulas R and
F2(b1, . . . , bn) into sub-formulas R+, F+

2 containing
only literals with the constant bj , and R−, F−

2 , in which
the constant bj is missing.

11) If the numbers of literals in the formulas R+ and F+
2

are not equal, the formulas are not isomorphic. The
algorithm stops its run.
Otherwise, check R+ and F+

2 for inconsistency.
12) If R+ and F+

2 are contradictory, then the formulas are
not isomorphic. The algorithm stops its run.

13) If there is no inconsistency, then we take the value bj
as the value for the variable xi in the formula R+ and
in mapping.
If values are found for all variables in R+, then take
R−, F−

2 as R and F2. Proceed to the execution of item
7.
If there are variables left in R+, then delete literals
without variables in R+ and F+

2 and take them as R
and F2. Go to Item 15.

14) If the minimal length k of the pair {[xi1 , . . . , xik ] :
[bj1 , . . . , bjk ]} in the structure mapping is greater than
1, then put all k2 possible values for one variable
{[xir ] : [bjt ]} for 1 ≤ r ≤ k, 1 ≤ t ≤ k on the
stack.Take a pair from the stack and in mapping replace
{[xi1 , . . . , xik ] : [bj1 , . . . , bjk ]} with {[xir ] : [bjt ]}.
Repeat Items 8 – 13 until a value for the variable xir is
found or one of the following situations occurs:

a) formulas R and F2(b1, . . . , bn) coincide up
to the permutation of literals, i.e., formulas
F1(a1, . . . , an) and F2(b1, . . . , bn) are isomorphic;

b) the numbers of literals in formulas R+ and
F+
2 are not equal (formulas F1(a1, . . . , an) and

F2(b1, . . . , bn) are not isomorphic);
c) inconsistency found in R+ and F+

2 (formulas
F1(a1, . . . , an) and F2(b1, . . . , bn) are not isomor-
phic).

15) Check whether the values of all variables have been
found.
If yes, then the formulas are isomorphic, the algorithm
stops its run.
If not, then go to Item 7.

Comment. If the formulas are isomorphic and you need
to find all their unifiers, then after answering that they are

isomorphic, you should check that the stack started in Item
14 of this algorithm is not empty.

IV. ABOUT THE ALGORITHM ISOM-1 COMPLEXITY

Items 1 – 13 of the algorithm are executed in a polynomial
(no more than a quadratic) number of steps. The main contri-
bution to the evaluation of computational complexity is made
by the implementation of Item 14 of the algorithm.

In the worst case, after the first execution of Item 7, the
algorithm proceeds to the Item 14. Here there is an exhaustive
search – a tree with height k and degrees of branching
k2, (k−1)2, . . . . Thus, the upper bound of the computational
complexity of the algorithm is 2n logn, where n is the number
of arguments in each of the formulas.

V. GRAPH ISOMORPHISM

In [5], it is proved that the problem of checking two
elementary conjunctions for isomorphism is polynomially
equivalent to the problem of checking for isomorphism of
two graphs (IG). Moreover, the IG problem is a narrowing
of the considered problem if there is only one predicate in the
elementary conjunction and it is two-place.

In particular, if the graph is oriented and without loops, then
the characteristic of the vertex is a pair: the degree of exodus
(the number of edges leaving the vertex) and the degree of
entry (the number of edges entering the vertex). In this case,
the algorithm proposed above can be applied without changes.

For a non-oriented graph, its degree acts as a characteristic
of a vertex.

VI. ALGORITHM ISOM FOR CHECKING ISOMORPHISM OF
TWO ELEMENTARY CONJUNCTIONS CONTAINING SEVERAL

PREDICATE SYMBOLS

Let two elementary conjunctions of literals F1(a1, . . . , an)
and F2(b1, . . . , bn) with the same number of literals with mul-
tiple predicate characters p1, . . . , pm be given. It is required to
check them for isomorphism and, in the case of isomorphism,
find the elementary conjunction R(x1, . . . , xn) and its unifiers
with F1(a1, . . . , an) and F2(b1, . . . , bn).

To solve this problem, it is necessary to expand the defini-
tion of the characteristic of an argument and the characteristic
of an elementary conjunction.

By means of Cpi
we will denote a subformula of elementary

conjunction C containing all literals with k-ary predicate
symbol pi and only them.

Definition 10. A string of the form χpi(ai) =
pi(n1, . . . , nk) is called a characteristic of the argument ai
in the subformula Cpi

of the elementary conjunction C. Here
(n1, . . . , nk) is a characteristic of an elementary conjunction
Cpi

with one predicate symbol pi.
Definition 11. The list of characteristics of the arguments

of an elementary conjunction C, ordered by increasing the
number of variables in the subformulas Cpi (i = 1, . . . ,m) is
called a characteristic of an elementary conjunction C.

It is necessary to make small changes to the structure
mapping. This structure for the elementary conjunction C will
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consist of a list of structures mapping (marked by the predicate
symbol) for the subformulas Cpi .

To check elementary conjunctions with several predicate
symbols for isomorphism and, if they are isomorphic, to find
the elementary conjunction R(x1, . . . , xn) and its unifiers with
F1(a1, . . . , an) and F2(b1, . . . , bn) the following algorithm
ISOM is proposed.

1) Find the characteristics of elementary conjunctions
F1(a1, . . . , an) and F2(b1, . . . , bn).

2) If the characteristics do not coincide, then the formulas
are not isomorphic. The algorithm stops its run.

3) As a formula R(x1, . . . , xn), take the formula
F1(a1, . . . , an). The unifier of formulas R(x1, . . . , xn)
and F1(a1, . . . , an) is an identical substitution λR F1 =
|x1,...,xn
a1,...,an

.
4) Pick the predicate pi, for which the formula R(pi)

contains the minimal number of variables 3.
5) Check the subformulas Rpi

and F2 pi
for isomorphism

using the algorithm ISOM-1 described above.
6) If Rpi and F2 pi are not isomorphic, then the original

formulas F1(a1, . . . , an) and F2(b1, . . . , bn) are not
isomorphic. The algorithm stops its run.
Otherwise, using the algorithm ISOM-1 described ear-
lier, find all the unifiers for the subformulas Rpi

and
F2 pi . During the running of this algorithm, we enter all
the values found for variables in the structure mapping.

7) Sort the unifiers in increasing order of the number of
variables in them. Organize the cycle 7a –7c by the
number of unifiers found.

a) Apply the unifier to the formula R. Check the
consistency of the obtained current values of the
formulas R and F2.

b) Check the current values of the formulas R and F2

for contradiction.
c) If yes, then go to Item 7a (or end the cycle if all

the unifiers are checked).
Otherwise, apply the unifier to the formula R.
From the current values of the formulas R and F2,
remove the literals with the predicate pi.
If the stack with unifiers is not empty, then go to
Item 7a.

d) If the current values of the formulas R and F2 are
empty, then the original formulas are isomorphic
and all the unifiers are found. The algorithm stops
its run.
Otherwise, go to Item 4.

VII. ABOUT THE ALGORITHM ISOM COMPLEXITY

All items of the algorithm, except the Item 5 (call of the
algorithm ISOM-1), including cycle 7a – 7c by the number of
unifiers for Rpi and F2 pi , are performed in no more than a
polynomial under the formula notation length number of steps.

3This choice is due to the fact that the algorithm ISOM-1 used next
has an exponential under the number of arguments in formulas checked for
isomorphism complexity.

This is due to the fact that the number of unifiers found by
the algorithm ISOM-1 for Rpi

and F2 pi
, does not exceed

ni
2. Therefore, the number of executions of the cycle 7a – 7c

does not exceed ni
2, and it is polynomial (quadratic) under

the length of the notation of subformulas with the predicate
pi. Inside the cycles, the number of operations is also no more
than quadratic under the length of Rpi and F2 pi notations.

The number of executions of the cycle 4 – 7d is equal to the
number of predicate symbols in the formula F2. At the same
time, the number of steps in Item 7 is O(2ni logni), where ni

is the number of arguments in the formulas Rpi and F2 pi .
Summing up the obtained estimates of the number of steps,

we obtain an estimate of the number of steps of the algorithm
ISOM O(

∑m
i=1 2

ni logni), where m is the number of predicate
symbols.
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