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Abstract— Let P be a class of problems recognized by a 
deterministic Turing machine which run in polynomial time. 
 In parallel, the class 𝐏" is considered. Indeed, the classes 𝐏 and 𝐏" 
are homomorphic (with respect to the relations  in question).   
It is proved in the article that the index sets  
{ 𝒛	|	𝑾𝒛  is 𝑷" -T-mitotic}, {𝒛	|𝑾𝒛  is weakly 𝑷" -T-mitotic}, 
{	𝐳	|𝑾𝒛  is 𝑷" T-autoreducible} and {𝒛	|	𝑾𝒛 ∈ 𝐏"}  are  
𝚺𝟑-complete. 

Keywords—Arithmetical hierarchy, P-T-mitotic set,  
P-T-autoreducible set, index sets. 

 

I. INTRODUCTION  
Information about the basic concepts of computability theory 
used in this article, in particular the Turing machine (TM), the 
numbering of computably enumerable sets {𝑊!}!∈#  and the 
arithmetical hierarchy, can be found in Rogers [11], Soare 
[13]. 
 
Notation  

Let 𝜔 be the set of all nonnegative integers  
(i.e. 𝜔 = {0,1,2,⋯ }). 
Given a set  Y, the set of all finite strings of elements from Y 
is denoted by Y∗. 
We fix the alphabet  Λ = {0,1}. 
The set  Λ∗ can be interpreted as binary  representations of the 
natural number  𝜔. 
 
Cook [3] introduced the notion of polynomial time 
reducibility.  This reducibility is  just time bounded version of  
Turing reducibility (≤%) defined by Post [10].  

 
A Turing machine T (deterministic or nondeterministic)  

runs in polynomial time  if  there  is  a  polynomial function 𝑞 
such that for every input of length  𝑛   any computation 
sequence of  T  halts in 𝑞(𝑛) or fewer moves. 

A problem is simply a subset of  Λ∗			and  P is the class of 
problems recognized by deterministic Turing machines, 
which run in polynomial time (see Ladner [9], p.155). 

It is an intuitively appealing notion that  P is the class of 
problems that can be solved efficiently. 

In this article, we consider the class P"  (see below), such that 
the classes P and 	P"   are homomorphic (i.e., there is a 
homomorphic mapping from P into P"  and vice versa, there is 
a homomorphic mapping from P"  into P). 

An	 oracle	 Turing	machine runs in polynomial time if  
there  exists a  polynomial function 𝑞 such that for every input 
of length 𝑛  and any oracle set  𝑋 , the machine halts within		
𝑞(𝑛)	steps		(see Ladner [9], p.156).    

Note that the definitions of  R. Ladner [9] and other authors 
are based on the concept of a multitape Turing machine. 

 
By analogy with the notions of T-mitoticity and  
T-autoreducibility, Ambos-Spies [1] introduced the notions of   
P-T-mitoticity,  weakly P-T-mitoticity and P-T-auto-
reducibility.  

 
This article studies the location of index sets { 𝑧	|	𝑊&  is   
𝑷" -T-mitotic}, {𝑧	|𝑊&  is weakly 𝑷" -T-mitotic}, {z	|𝑊&  is 
𝑷" -T-autoreducible} and {𝒛	|	𝑊& ∈ 𝐏"}  in the arithmetical 
hierarchy. 

II. PRELIMINARIES  
Notation 

We will denote the Λ∗  elements by lower case Greek letters 
𝜎, 𝜏, … . 
We let  𝜎	�̂�  denote the  concatenation  of string  𝜎  followed 
by  𝜏. 
Let < be the natural order on Λ∗		(𝜆 < 0 < 1 < 00 < 01 <
⋯), where  𝜆 represents the empty string. 
We will denote the subsets of  Λ∗  by upper case Greek letter 
	Ξ,Θ,… , as	well	as	by	the	Latin	letter		𝑃	with	subscripts	(𝑃!). 
 
If  𝜎 ∈ Λ∗	, we let |𝜎| denote the length of  𝜎. 
If  Ξ ⊆ Λ∗	, then  

Ξ(𝜎) = [1,			if	𝜎 ∈ Ξ	0,		if	𝜎 ∉ Ξ.  

If  𝐴 ⊆ ω,	 then 	𝐴(𝑥) = 𝜒'(𝑥),	(where		𝜒'		is a characteristic	
function of a set  𝐴.)		
 
Define the mappings ℎ(, ℎ) as follows:   
Let ℎ(		be a 1-1 mapping from ω onto  Λ∗, 
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ℎ((0) = 𝜆,  
ℎ((𝑛 + 1) = 𝑛 + 2 -nd string  according to the order of 
strings on Λ∗.  
 
Let ℎ)		be a 1-1 mapping from Λ∗	onto ω.  
ℎ)(𝜆) = 0; 
ℎ)(𝑛 +1-st string according to the order of strings on  Λ∗)= n  
(In fact, ℎ) = ℎ(*)	). 
 
REMARK. It can be proved that the mapping  ℎ): Λ∗ 	→ ω is 
an isomorphism (see the definition of isomorphism in 
Waerden [17], pp. 25-26). 

 
It is known that there exist effective enumerations of the sets  
𝑃(, 𝑃), …	  and  oracle Turing machines 𝑴(,𝑴), …	 , where  𝑃!  
denotes the set recognized by  the Turing machine (also 
denoted by 𝑃! ), which runs in polynomial time, and 𝑴!  
denotes the oracle Turing machine, which runs in polynomial 
time.  𝑴!(𝐴)  denotes the set recognized by  𝑴!   with the 
oracle  A (see Ladner [9], p.157). 
 
Notation. 
𝑓Ö	𝑥 denotes the restriction of  𝑓 to arguments y< 𝑥, and  𝐴Ö	𝑥 
denotes  𝜒'Ö	𝑥.  
(Note that any string σ ∈ Λ∗ can be considered as a partial 
function from ω				into Λ.) 
Let   ℎ((𝐴) = {𝜏|	(∃𝑥)	[ℎ((𝑥) = 𝜏		&			𝑥 ∈ 𝐴]}, 

ℎ)(Ξ) = {𝑥|(∃𝜏)[ℎ)(𝜏) = 𝑥		&		𝜏 ∈ Ξ]}. 
Let {𝑞!}	!∈#		be  the effective enumeration of polynomials.  
Let  ℎm  be a computable function from ω	onto ω,. 
 
Based on the available numbering of  computably enumerable 
(c.e.) sets {𝑊!}!∈#, the available numbering of  computable 
operators {𝚽!}!∈# , and the available enumeration of 
polynomials  we define for an arbitrary 𝑖  (proceeding from 
the fact that  ℎm(𝑖) = (𝑖(, 𝑖)))) 

1) the set 𝑃m!  as follows: 
(∀𝑥)(∀𝑠 ≥ 𝑞!!(𝑥)) s𝑃m!,.(𝑥) = 𝑊!",/#!(1)

(𝑥)t, 
2) the oracle Turing machine 𝑴" !  as follows: 

(∀𝑥)(∀𝑠 ≥ 𝑞!!(𝑥)) u∀𝜎|4|5/#!v [𝑴
" !,.(𝜎)(𝑥) =	

𝚽!",/#!(1)
(𝜎Ö/#!(1))(𝑥)]. 

 
Based on the known results (see, for example Hopcroft [6], 

Arora, Barak [2], Sipser [12], Terwijn [15]), the following 
conclusion  is presented in Arora, Barak [2], p. 30: 

All low-level choices (number of tapes, alphabet size, etc.) in 
the definition of Turing machines are immaterial, as they will 
not change the definition of   P.  
 
Thus, since neither the number of tapes nor the way the inputs 
and outputs are presented (binary coding or natural numbers) 
significantly affect (see, for example, Hopcroft [6], Arora, 
Barak  [2]), we can assert that  

(∀𝑖)(∃𝑗)(∀𝑥)x𝑃m!(𝑥) = 𝑃6yℎ((𝑥)z{		&  
(∀𝑗)(∃𝑖)(∀𝜎)x𝑃6(𝜎) = 𝑃m!yℎ)(𝜎)z{ 

and   

(∀𝑖)(∃𝑗)(∀𝑥)(∀𝐴)x𝑴" !(𝐴)(𝑥) = 𝑴6(ℎ((𝐴))(ℎ((𝑥)){		&  
(∀𝑗)(∃𝑖)(∀𝜎)(∀Ξ	)x𝑴6(Ξ	)(𝜎) = 𝑴" !(ℎ)(Ξ	))(ℎ)(𝜎)){. 

 
For a given numbering of  c.e. sets  {𝑊!}!∈#  let   

 𝑃m𝐼𝑛𝑑 = {𝑧|(∃𝑖)[𝑊& = 𝑃m!]}	and  𝐏" = {𝑃m!}!∈#.  
 

Definition 1. Define 𝐵 ≤%
7 	A  if  there is a such  i  that 		

𝐵 = 	𝑴!(𝐴) (see Ladner [9], Ambos-Spies [1]). 
 
Definition 2. Define  𝐵 ≤!

"# 	A  if  there is a such  i  that  
𝐵 =	𝑴" !(𝐴). 

 
Definition 3. A splitting of  𝐴  is a pair   𝐴), 𝐴, of  c.e. sets 
such that  𝐴)⋂𝐴,. We sometimes will write  A=𝐴)⨆𝐴,  if   
𝐴), 𝐴,  is a splitting of  𝐴 (see Downey, Stob [5], p. 4). 

 
Definition 4. A c.e. set 𝐴 is T-mitotic  if there is a splitting  
𝐴), 𝐴, of  𝐴 such that 𝐴) ≡% 𝐴, ≡% 𝐴 (see Downey, Stob [5], 
p. 83, Lachlan [7], p. 9-10). 

 
Let us recall some information about T-autoreducibility. 
 
Definition 5. We say that a partial recursive functional 𝚿 is an 
autoreduction  if,  for all  𝑋	 and n, the computation of  
𝚿(𝑋, 𝑛)  includes no question of the form “𝑛 ∈ 𝑋?”. A set  𝐴	 
is T-autoreducible if there exists an autoreduction 𝚿  such 
that 𝐴 = 𝚿(A) (see Trakhtenbrot [16], Ladner [8], p. 199). 

 
From the definition of   T-autoreducibility it follows that 

𝐴		is		𝑇-autoreducible ⟺ (∃𝑒)(∀𝑥)(𝜱8(𝐴⋃{𝑥})(𝑥)) =
𝐴(𝑥)) ⟺ (∃𝑒)(∀𝑥)(𝜱8(𝐴 − {𝑥})(𝑥)) = 𝐴(𝑥)). 

 
Ambos-Spies introduced the following notions: 
a)   A computable set  𝐴	 is  P-T-mitotic if  there is a set   

𝐵 ∈ 𝐏	  such that  𝐴 ≡%
7 𝐴⋂𝐵 ≡%

7 𝐴⋂𝐵� .  Otherwise,  𝐴	  is   
non-P-T-mitotic (see Ambos-Spies [1], p. 4).  

b)   A computable set 𝐴	 is  weakly P-T-mitotic if  there 
are sets  𝐴(	  and 𝐴)	 such that  𝐴 = 𝐴( ⊔ 𝐴)   and 
𝐴	 ≡%

7 𝐴(	≡%
7 𝐴).  Otherwise,  𝐴	 is  strongly non-P-T-mitotic 

(see Ambos-Spies [1], p. 4). 
c)   A computable set 𝐴	 is P-T-autoreducible if  for 

some  𝑛 ∈ 𝜔 and  every 𝑥 ∈ Λ∗, 𝐴(𝑥) = 𝑴9(𝐴 − {𝑥})(𝑥)  
(see Ambos-Spies [1], p. 19). 

(Ambos-Spice prefers the expression “ 𝐴(𝑥) = 𝑴9(𝐴 −
{𝑥})(𝑥) ”  instead of  the  equivalent  expression 
“𝐴(𝑥) = 𝑴9(𝐴⋃{𝑥})(𝑥)”  in the definition of  P-T-autoredu-
cibility (see Downey, Slaman [4], p. 121).) 

Ambos-Spies has proved that  

(i)  if  𝐴	 is  P-T-mitotic, then  𝐴	 is P-T-autoreducible 
(see Ambos-Spies [1], p.19), 

(ii) there is a computable set 𝐴 , which is P-T-autore-
ducible, but not P-T-mitotic (see Ambos-Spies [1], p. 21). 
 
We represent the definition of  𝑃m-T-mitoticity according to 
Ambos-Spiеs with slight modifications (see Ambos-Spies 
[1]).  
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Definition 6. A computable set 𝐴	 is 𝑃m-T-autoreducible if  for 
some  𝑛 ∈ 𝜔 and every,  𝑥 ∈ 𝜔   𝐴(𝑥) = 𝑴" 9(𝐴⋃{𝑥})(𝑥). 
 
Note that if  𝐴  is cofinite or finite, then  𝐴	 is P-T-mitotic and, 
so 𝐴	 is  weakly P-T-mitotic  (see Ambos-Spies [1], pp. 4-5).  

 
Definition 7. a) A computable set  𝐴	 is  𝑃m-T-mitotic if  there 
is a set  𝐵 ∈ 𝐏"	 such that  𝐴 ≡!

"# 𝐴⋂𝐵 ≡!
"# 𝐴⋂𝐵* .  Otherwise,  

𝐴	 is  non-	𝑃m-T-mitotic.  
b)   A computable set  𝐴	 is  weakly 𝑃m-T -mitotic if  there 

are sets  𝐴(	  and 𝐴)	 such that  𝐴 = 𝐴( ⊔ 𝐴)   and 
𝐴	 ≡!

"# 𝐴$	≡!
"# 𝐴%. Otherwise,  𝐴	 is  strongly non-𝑃m-T -mitotic 

(see Ambos-Spies [1], p. 4). 
 

Definition 8. A relation  𝑅 ⊆ 𝜔9, 𝑛 ≥ 1, is computable  if  
its characteristic function 𝜒: is computable, where  
𝜒:(𝑥), ⋯ , 𝑥9) = 1   if  (𝑥), ⋯ , 𝑥9) ∈ 𝑅  and =0, otherwise 
(see Soare [13], p. 11).  

 
Definition 9.  (i) A set 	𝐵  is in  Σ( , if  𝐵 is computable, 

(ii) For 𝑛 ≥ 1, 𝐵  is in  Σ9 (written 𝐵 ∈ Σ9), if there is a 
computable relation  𝑅(𝑥, 𝑦), 𝑦,, ⋯ , 𝑦9) such that  𝑥 ∈ 𝐵 ⟺	
(∃𝑦))(∀𝑦,)(∃𝑦;)⋯ (𝑄𝑦9)𝑅(𝑥, 𝑦), 𝑦,, ⋯ , 𝑦9), where 𝑄		is ∃  
if  𝑛  is odd and  ∀ if  𝑛  is even (see Soare [13], p. 60). 

 
Definition 10.   For any given class  ℰ of computably 
enumerable sets, let  𝐼𝑁𝐷ℰ = {𝑧|	𝑊& ∈ ℰ} . If  𝐴 = 𝐼𝑁𝐷ℰ for 
some  ℰ, 𝐴  is called  an index set (see Rogers [11],  p. 324). 

 
Definition 11. 𝑅𝑒𝑐 = {𝑧|	𝑊&		is computable (recursive)}, 
𝐹𝑖𝑛 = {𝑧|	𝑊&			is	finite}, 
𝐶𝑜𝑓 = {𝑧|	𝑊�&			is	finite}  (see Soare [13], p. 17). 
 
Definition 12.  A set  𝐴	 is  Σ9-complete  (Π9-complete) if   
𝐴 ∈ Σ9	(Π9) and  𝐵 ≤) 𝐴	 for every 𝐵 ∈ Σ9	(Π9) (it makes 
no difference whether we use  “𝐵 ≤= 𝐴”  or  “𝐵 ≤) 𝐴”  in the 
definition of  Σ9-complete and Π9-complete) (see Soare [13], 
p. 64). 

 
It is known that  Fin is Σ, -complete,  𝐶𝑜𝑓  and   𝑅𝑒𝑐  are 
Σ; -complete (See Soare [13], pp. 65-67, Rogers [11],  
pp. 327-328). 

 
Definition 13.  𝑃m𝐼𝑛𝑑 = {𝑧	|	𝑊& ∈ 𝐏"}, 
𝑇y𝑃mz𝑀 ={𝑧	|	𝑊& is  𝑃m-T-mitotic}, 
𝑊𝑇y𝑃mz𝑀 = {𝑧	|𝑊& is weakly 𝑃m-T-mitotic}, 
𝐴𝑇y𝑃mz = {z	|𝑊& is  𝑃m-T- autoreducible}=	
{z	|(∃𝑖)(∀𝑥)x𝑴" !(𝑊& 	⋃{𝑥})(𝑥) = 𝑊&(𝑥){	&		𝑊&  is  
computable}. 

 

III. RESULTS  
In this paper, Proposition 1 and the following three 

Theorems are proved:  

Proposition 1: The index set  𝑃m𝐼𝑛𝑑 = {𝑧	|	𝑊& ∈ 𝐏"}		  is 
 𝛴;-complete. 

Theorem 1:   The index set   𝑇y𝑃mz𝑀 = {𝑧	|𝑊&			𝑖𝑠		
𝑃m-T- mitotic}  is  𝛴;-complete. 

Theorem 2:  The index set  	𝑊𝑇y𝑃mz𝑀{z	|Wz 		is weakly 	
 P"-T- mitotic}  is  𝛴;-complete. 

Theorem 3: The index set  	 𝐴𝑇y𝑃mz={z	|Wz	  is		
 P"-T-autoreducible}  is  𝛴;-complete. 

 

IV. CONCLUSION 
Studies of the locations of various index sets in the 
arithmetical hierarchy were carried out back in the 50s of the 
twentieth century (the works of H. Rice, N. Shapiro,  
H. Rogers and others are well known). In the following 
decades, these studies were actively continued thanks to the 
works of C. Yates, D. Martin, C. Jockusch, M.M. Arslanov, 
M. Stob, T. Slaman, R. Solovay, S. Schwarz  and many others 
(see, for example, Soare [13], Chapter XII, Soare [14], 
Chapter 4). 
 
In this article, the locations in the arithmetical hierarchy of the 
index sets, indicated in the Abstract of this article and in 
Chapter Results  are precisely established. 
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