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Abstract— Model-based testing (MBT) is a promising 
approach for generating test cases from system models, 
providing high levels of automation and effectiveness. The 
potential for automation in MBT is possible if the model is 
formal and machine-readable. A commonly employed formal 
modeling technique is the representation of a system as an 
extended finite state machine (EFSM). However, in practice, 
formal models are not common in the industry. Activity 
diagrams, on the other hand, are well-suited for generating test 
cases, but their lack of formal semantics can lead to ambiguous 
interpretations and make them unsuitable for automation. In 
this paper, we propose an efficient approach that maps UML 
Activity Diagrams into EFSMs, providing a formal modeling of 
the system under test (SUT) and utilizes JUnit and ModelJUnit 
Java libraries to automatically generate test cases, using 
coverage measures to evaluate them. Our approach aims to 
overcome the limitations of automation in MBT, while achieving 
efficient coverage and execution time metrics.   

Keywords—Model-Based Testing; Automatic Test Case 
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I.  INTRODUCTION 
Software engineering is a field that employs a methodical 

and structured approach to the development, operation, and 
maintenance of software systems [1]. The goal of software 
organizations is to develop and deliver software within 
specified timeframes and budgets [2]. However, software 
development, particularly for complex systems, is prone to 
human errors, necessitating the assessment of software for 
errors during source code generation [3]. Software testing 
plays a crucial role in identifying faults and is a vital but costly 
phase in software development and maintenance. One of the 
most challenging aspects of testing is generating test cases, 
which is essential to ensure the success of the testing phase 
[4].  

Modeling techniques can enhance software testing 
productivity when used in this context [5]. Model-based test 
case generation (MB-TCG) is a methodology that involves the 
generation of tests using system models, which are based on 
model-based testing (MBT) [6]. Using MBT allows testing to 
begin early in the software development process, running tests 
without requiring access to the source code of the system 
under test, owing to its black-box nature. This technique uses 
system models to generate and execute test cases 
automatically, reducing testing time and effort [7]. 

 Unified Modeling Language (UML) is a popular option 
for software modeling as it offers a high level of 
expressiveness [8]. Activity Diagram is the most used UML 
diagram in model-based test case generation [6]. UML 
Activity Diagram is a semi-formal specification that can be 
used to describe the workflow of the system and captures 
critical system behaviors [9]. Although this Diagram is widely 
used in this field, there is a lack of automated techniques for 
test generation from UML activity diagrams [10]. In addition 
to the mentioned problem, due to the lack of formal semantics, 
the use of UML diagrams can lead to inconsistency, 
transformation problems, and different interpretations [5]. 
Another issue of note is that UML specification presents a 
challenge in terms of navigation and comprehension [11]. 

Using formal models is one approach to mitigate these 
issues, as they offer precise semantics for representing system 
behavior [8]. Finite State Machines (FSMs) are a favorite 
notation in formal system modeling and testing software [5]. 
Although, formal models are rarely used in practice, probably 
because developers lack the necessary training and familiarity 
with the mathematical notation [11]. 

Formal models are highly recommended in Model-Based 
Testing (MBT) due to their ability to automate the testing 
process, resulting in improved efficiency and effectiveness 
[5]. Extended finite state machine (EFSM) is one of the formal 
models that have received significant attention and extensive 
study over the past few decades [12]. An EFSM model is an 
enhanced model based on FSM. This model can represent 
many complex systems containing both control and data parts 
[13]. 

In the context of this paper, we propose an efficient and 
systematic approach that maps UML Activity Diagrams into 
EFSM following some transformation rules. By using JUnit 
and ModelJUnit Java libraries, test cases are automatically 
generated from EFSM. The main contribution of this paper is 
the definition of transformation rules to map the various 
elements of the UML Activity Diagram into constructions of 
the Extended Finite State Machine (EFSM). Furthermore, to 
tackle the issue of complexity and understandability of the 
UML specification problem, we utilize an updated version of 
the metamodel for UML Activity Diagrams, specifically 
tailored for simplicity and applicability while ensuring a close 
alignment with the EFSM metamodel used in our research. 
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The rest of this paper is organized as follows: Section II 
describes some related research. Afterwards, Section III 
presents UML Activity Diagram and Extended Finite State 
Machine. Section IV describes our approach and its 
implementation. In Section V, the results obtained by 
implementing the proposed approach on a sample scenario 
have been discussed. Finally, the conclusion and future work 
are placed in Section VI. 

II. RELATED WORK

Numerous research studies have been conducted on the 
subject of generating test cases from UML Activity Diagrams. 
One of the most relevant related works in the area of 
automated test case generation from UML models is the article 
by Smith et al. [5]. They proposed an approach for generating 
test cases from UML sequence diagrams using Extended 
Finite State Machines (EFSMs). Their approach showed 
promising results, but one of its weaknesses was that it only 
worked for sequence diagrams. We built our work upon the 
approach proposed by this article, but we extended it to work 
with UML activity diagrams (AD) since ADs are more 
commonly used in software development, as shown in a recent 
survey [6]. Our approach can generate test cases that cover a 
wider range of scenarios since Activity diagrams can model 
more complex behavior and allow for more varied interactions 
between objects than sequence diagrams [14]. 

In [15], the authors propose an approach for generating 
scenario-based test cases from UML Activity Diagrams. The 
proposed approach utilizes an intermediate model named 
Extended Activity Dependency Graph (EADG), which 
extends activity graphs to generate test scenarios. However, 
this approach differs from ours in that it does not utilize 
model-driven engineering (MDE) concepts or formal models 
for test generation. 

In [16], the authors propose a novel method for generating 
test cases using UML Activity and Sequence Diagrams. Their 
approach involves the conversion of Sequence Diagram into a 
graph, which refers to Sequence Graph, and transforming the 
Activity Diagram into the Activity Graph. Test suite 
generation is achieved by merging the graphs into a single 
software graph. While this methodology shares similarities 
with ours, it diverges by not employing MDE concepts or 
formal models for test generation. Moreover, the approach 
necessitates the manual creation of both Activity and 
Sequence Diagrams, which can make it difficult to use the tool 
for more complex software systems. 

III. BACKGROUND

A. Activity Diagram 
Using an Activity Diagram in UML allows us to model the 

dynamic characteristics of systems [17]. Use cases or business 
processes can also be described with an activity diagram to 
show how activities flow sequentially and to show logic [16]. 

An activity diagram is formally defined as a six-tuple D = 
(A, T, F, C, aI, aF), where A is a finite set of A ⊆ ℙ(S) 
representing activity states, T is a finite set of T ⊆ ℙ(Y) 
denoting completion transitions. F ⊆ {A × T} ∪ {T × A} 
signifies the flow relation connecting activities and 
transitions. C is a finite set C ⊆ G(T) representing guard 
conditions, and ci is in correspondence with ti, and Cond(ti) 

= ci. aI ∈ A is the initial state, and aF ∈ A is the final state. 
There exists only one transition t ∈ T such that (aI, t) ∈ F, and 
for any t' ∈ T, (t', aI) ∉ F and (aF, t') ∉ F [9]. 

In this paper, we use some of the most common elements 
of an Activity Diagram, which are as follows: 

• Initial Node: An InitialNode is a control node that
marks the beginning of a process or activity flow.

• Final Node: A FinalNode is a control node that marks 
the completion of an activity or process flow.

• Executable Activity Node: ExecutableNode is a type
of action node that can contain executable behavior.

• Merge Node: A MergeNode is a control node that
merges multiple incoming control flows, allowing
for their convergence without any synchronization.

• Decision Node: A DecisionNode is a control node
that represents a decision point, where one of several
outgoing control flows is chosen based on a
condition or criteria evaluation.

• Input and Output Pins: Input and Output Pins
represent the transfer of data or objects between
activity nodes, where an Input Pin accepts values or
objects as input to an activity node, and an OutputPin 
produces values or objects as output from an activity
node.

• Send and Receive Signal Actions: A Signal
represents inter-object communication without the
need for a reply, initiating an asynchronous reaction
in the receiver [8].

 Other elements of Activity Diagrams defined by UML 2.5 
are not in the scope of this article. 

B. Extended Finite State Machine 
The Extended Finite State Machine (EFSM) is a well-

known formal specification technique that is commonly 
employed to define the various states and actions of a software 
system. This method is widely used to describe the behavior 
of software systems in a precise and unambiguous manner 
[18]. 

An EFSM can be formally represented by a 6-tuple (𝑠𝑠0, S, 
V, I, O, T) where S is a finite set of states with initial state 𝑠𝑠0; 
V is a finite set of context variables; I is a set of transition 
inputs; O is a set of transition outputs; and T is a finite set of 
transitions.  

Each transition tx ∈ T can also be represented formally by 
a tuple tx = (si, sj, Ptx, Atx, itx, otx), where si, sj are the origin 
and target states of transition tx, and itx ∈ I represents the input 
parameters of the beginning of the transition tx, such as events 
that can be interpreted as special types of input parameters, 
and otx ∈ O denotes the output results at the end of the 
transition tx. Ptx represents the predicate conditions (guards) 
with their respective context variables, and Atx denotes the 
operations (actions) with their respective current variables. 
EFSM models can be represented as a directed graph G(V, E). 
The elements of V represent the states of an EFSM, and E 
denotes its transitions [11]. 
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IV. PROPOSED APPROACH

This section presents an automated approach for 
generating test cases from UML activity diagrams using 
EFSM. The methodology involves several steps that begin 
with translating the UML activity diagram into a formal 
EFSM model using Atlas Transformation Language. The 
generated EFSM model is used to automate the test generation 
process, where test cases are generated based on EFSM-based 
methods. These methods provide coverage for different paths 
and states within the system. ModelJUnit and JUnit libraries 
are used to facilitate the generation of executable test cases. 
Acceleo is then used to perform a Model-To-Text (M2T) 
transformation, converting the generated test cases from a 
model representation into a textual representation that can be 
executed.  

A. Metamodeling Constructs 
In order to establish a clear and structured foundation for 

our research, we defined two metamodels: the UML Activity 
Diagram metamodel, which serves as a source for our model 
transformation process, and the Extended Finite State 
Machine metamodel, which represents the target model. To 
implement these metamodels, we utilized the Eclipse 
Modeling Framework (EMF) and represented them in Ecore. 

The official UML specification [8] can be complex to 
navigate and hard to understand. Therefore, this metamodel 
has been heavily criticized, and the use of simplified 
metamodels is prevalent in most of the literature on this 
subject [11]. To address this issue, a simplified metamodel for 
the Activity Diagram is proposed in this study, depicted in Fig. 
1, in comparison to the metamodel specified by the OMG.  

The proposed metamodel contains 19 metaclasses and 
eliminates constructs that are not frequently used in practice. 
By streamlining the metamodel, it is easier to understand and 
apply in practice, providing a more practical and 
straightforward approach to Activity Diagrams. 

 As shown in Fig. 2, the metamodel used for EFSM is 
comprised of six metaclasses, with EFSM serving as an 
abstraction of an Extended Finite State Machine. Within the 
EFSM entity, there are states, transitions, and context 
variables [5]. 

B. Metamodels Transformation Principles 
A detailed description of the rules for transforming an 

Activity Diagram into an Extended Finite State Machine is 
provided in this section. The defined transformation rules are 
listed below: 

• RInitialNode: For the node of type InitilalNode, first
an EFSM is created with the same name of the AD,
then initial state S0 is added to it. The initial state is
used to update both the previous state and the current
state.

• RDecisionNode: RDecisionNode rule operates in
two stages, depending on the type of decision node
being processed. For each conditional decision node,
this rule creates one new state and two new
transitions. The transition with a guard of "true"
leads to the newly created state, while the transition
with a guard of "false" returns to the previous state.

For switch decision nodes, this rule creates a new 
state and transition for each guard. Regardless of the 
type of decision node, each transition has output, 
guard, and action labeled with the guard of the 
specific control flow, and any output pin from the 
node before the decision node is treated as the 
transition's input. After creating each new state, this 
rule updates both the previous and current states. 

Fig. 1. Activty Diagram Metamodel 

Fig. 2. Extended Finite State Machine Metamodel [5] 

• RMergeNode: This rule handles merge nodes in the
Activity Diagram (AD) by creating a new transition
for each node that has a control flow leading to the
merge node. These transitions do not have any
output, guard, or action, but any output pin of the
nodes connected to the merge node is considered to
be a corresponding transition's input. The transitions
all lead to the state that was already created for the

28



node after the merge node using the 
"RActivityNode" rule. After creating these 
transitions, both the previous and current states are 
updated. 

• RSignalActivityNode: For nodes of type
ExecutableActivityNode, SendSignalActionNode,
and ReceiveSignalActionNode, this rule creates a
new state and transition. The new state is connected
to the previous state using the transition, and all pins
of the corresponding node in the AD are considered
as inputs for the transition. Additionally, this rule
checks all control flows of a node to see if any flow
goes backward without any conditions. If such flows
exist, a new transition is created to connect the
corresponding states to each other, and the inputs of
these transitions are labeled as previously explained.
After creating these new states and transitions, the
previous and current states are updated as usual.

Our implementation of the transformation rules relied on 
Atlas Transformation Language (ATL).  

In this study, we are utilizing a slightly modified version 
of some of the lazy rules proposed in [5], in combination with 
our matched rules. Specifically, the following lazy rules are 
employed: 

• LrInitialState: The initial state S0 is created,
followed by incrementing the state order. Both the
previous state and the current state are updated to the
newly created initial state. Additionally, the name of
the Activity Diagram is stored in a variable.

• LrState: A new state is generated, the state order is
incremented, the previous state is updated to the
current state, and the current state is changed to the
newly created state.

• LrTransition: A transition is established, connecting
the previous state to the current state. The transition's
input is labeled with the input/output pin of the
Activity Diagram. The output, guard, and action can
be null and depend on the type of the activity node.

In our study, we used an automatic four-step approach for 
generating test cases. This approach involves implementing 
the EFSM model interface, implementing the adapter, 
generating the test cases, and then concretizing them. These 
four steps were automatically generated using Acceleo. 

V. EXPERIMENT 
This section presents an overview of our proposed 

approach, as well as the results and a discussion of the 
experiment. 

A.  Case Study 
This section describes a case study demonstrating the 

practical application of our approach. The UML Activity 
Diagram in Fig. 3, depicts an ATM (Automatic Teller 
Machine) withdrawal process. Initially, we created an Activity 
Diagram model that described the behavior of the system, 
using the Activity Diagram editor implemented in the EMF. 
To transform this Activity Diagram model into an executable 

model, we utilized the transformation rules implemented in 
ATL.  

After the execution of the transformation rules, we 
obtained an EFSM model that reflected the behavior of the 
system. Fig. 4 illustrates the resulting EFSM model that was 
generated. We created this model using the Visual Paradigm 
Drawing Tool by utilizing the XML output file generated from 
executing the transformation rules on the ATM Activity 
Diagram.  

Fig. 3. ATM Activity Diagram 

Fig. 4.  ATM EFSM Model 

Afterwards, we followed the 4-step automatic approach, 
as previously described, to generate test cases using classes 
AtmModel, AtmAdapter, AtmTest, and AtmJUnit. These 
classes were obtained through the implementation of the four 
steps in the approach. Finally, our approach was put to the test 
through a series of test cases designed to assess its 
effectiveness. To execute the tests, we utilized the Eclipse 
Modeling Framework (EMF) in conjunction with the 
ATMTest and ATMJUnit classes.  
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Reflecting the importance of coverage criteria to test 
engineers when creating the test cases [19], we used three 
distinct coverage types to evaluate the application of our 
approach. A test model can be represented by an abstract 
regular set P ⊆ Σa, where Σ is an alphabet denoting possible 
actions, and a ∈ N ∪ {∗} indicating that each test can have 
any length. Considering the fact that P may be huge or even 
infinite, including 'a' in N ∪ {∗} means that tests can vary in 
length within specific boundaries [20]. As a result, coverage 
criteria can be outlined as in Definition 1. 

Definition 1 (coverage). A set of tests S ⊆ P is said to cover 
a test-model P ⊆ Σa under the coverage criteria C = {C(i)}i∈I, 
C(i) ⊆ Σa if ∀i ∈ I : (C(i) ∩ P ≠ ∅ ⇒ C(i) ∩ S ≠ ∅) and 
∪i∈I  C(i) = Σa, where the index set I is used to name the 
coverage sets and the coverage sets C(i) are used to identify 
the aspects that are covered by the tests [20]. 

During testing, we tracked state, action, and transition 
coverage metrics for each individual test case, as presented in 
Table I. The state coverage metric indicates the number of 
states visited, and its formula can be expressed as (1), where 
|SV| is the number of states visited during testing and |TS| is 
the number of total states. 

state coverage = (|SV|/|TS|) ×100   (1) 

 The action coverage metric reflects the number of actions 
performed during testing. The action coverage formula is 
given by (2), where |AP| is the number of actions performed 
during testing and |TA| is the number of total actions. 

action coverage =(|AP|/|TA|) ×100   (2) 

 The transition coverage metric measures the number of 
transitions that were visited. The transition coverage formula 
is shown in (3), where |TV| is the number of states triggered 
during testing and |TT| is the number of total transitions.  

transition coverage = (|TV|/|TT|) ×100   (3) 

Prior to initiating the tests, we established initial values for 
the card attribute (111), psw attribute (123), and balance 
attribute (100.00) belonging to the Bank class of the SUT. 

B. Obtained Results 
The generated test cases and the results obtained from their 

execution are all reported in Table I. We have also included a 
visually informative bar chart, shown in Fig. 5 to illustrate the 
metrics associated with each test case.  

Fig. 5 displays the coverage metrics for each test case 
generated using our approach. It is important to note that the 
possible number of states, actions, and transitions that can be 
visited may vary depending on the specific test case and its 
associated parameters. 

In particular, for the initial set of generated test cases, the 
total number of states in the ATM system is determined to be 
14 based on the EFSM representation in Fig. 2. However, 
since the value is not generated within the scope of the test 
cases T1, T2, and T3, the actual number of states that can be 
visited is reduced. According to our EFSM analysis, only 5 
states are possible to be visited, given the absence of the 
value.  

Similar considerations apply to the transition coverage. 
For action coverage, all possible actions are performed by 
executing each test case. Note that the same explanation 
applies to all the other generated test cases, where the 
coverage metrics should be interpreted within the context of 
each individual test case. 

C. Discussion 
Our approach's novelty lies in its ability to automate the 

entire testing process, with the exception of manually defined 
stubs. To the best of our knowledge, the level of automation 
we have achieved with ADs has not been reported before, 
making our approach a valuable contribution to the field. To 
further illustrate the superior automation achieved by our 
approach, we conducted a comprehensive comparison with 
three of the most automated and recent works in the field, as 
shown in Table II. 

TABLE I.  GENERATED TEST CASES 

Fig. 5. The state, action, and transition coverage, along with the execution 
time (in milliseconds), for each generated test case 

TABLE II.  COMPARISON OF THE LEVEL OF AUTOMATION 

Test 
case card psw value State Action Trans. Time 

(ms) 

T1 111 123 5/14 12/12 60/144 6.0 

T2 111 246 5/14 12/12 60/144 13.6 

T3 222 246 2/14 12/12 24/144 7.2 

T4 111 123 50 12/14 12/12 144/144 16.7 

T5 111 123 200 12/14 12/12 144/144 23.5 

Total _ _ _ 14/14 12/12 144/144 _ 

Approach Level of 
Automation Description 

M. Rocha et al. [11]  Very High Achieves superior automation, but 
not applicable to ADs. 

A. Hettab et al. [15] Moderate Test data can only be generated 
manually from the automatically 
generated test scenarios. 

Meiliana, I. et al [16] Fairly High Testing itself is automated, but the 
approach necessitates the manual 
creation of 2 UML diagrams. 

Our approach High Automates the entire testing 
process except for stubs. 
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 Direct comparison between works with different levels of 
automation would not be valid [21]. Given that no other work 
has reported achieving the same level of automation with 
ADs, our proposed approach and the results obtained can only 
be discussed in a more general sense. As outlined in Table I, 
by executing all the generated test cases, we achieve complete 
coverage of all EFSM actions, states, and transitions. 
Furthermore, the efficiency of our approach is demonstrated 
by the fact that it generates test cases in less than 1 second.   

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an automated model-based test 
case generation approach using Activity Diagrams. To 
formalize the activity diagrams, we proposed a simplified 
metamodel that was used to map ADs to an EFSM 
representation using some transformation rules. We then 
applied a four-step approach to generate test cases, using JUnit 
and ModelJUnit to execute the tests. Our approach was able 
to achieve good coverage and time results, demonstrating the 
effectiveness of our methodology. 

As future work, other UML diagrams, such as state and 
class diagrams, can be incorporated into the proposed test 
generation process. Moreover, advanced testing techniques, 
such as mutation testing, can be used to enhance the generated 
test suite. Finally, our approach can be applied to a real-world 
software system to further evaluate its effectiveness and 
scalability. 
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