
Automated Model-Based Test Case Generation for
UML Activity Diagrams using EFSM
Nazanin Shahbazi

Data Mining Laboratory, Department of Computer
Engineering

Alzahra University
Tehran, Iran

e-mail: N.shahbazi@student.alzahra.ac.ir

Mohammad-Reza Keyvanpour
Department of Computer Engineering, Faculty of

Engineering
Alzahra University

Tehran, Iran
e-mail: keyvanpour@alzahra.ac.ir

Abstract— Model-based testing (MBT) is a promising
approach for generating test cases from system models,
providing high levels of automation and effectiveness. The
potential for automation in MBT is possible if the model is
formal and machine-readable. A commonly employed formal
modeling technique is the representation of a system as an
extended finite state machine (EFSM). However, in practice,
formal models are not common in the industry. Activity
diagrams, on the other hand, are well-suited for generating test
cases, but their lack of formal semantics can lead to ambiguous
interpretations and make them unsuitable for automation. In
this paper, we propose an efficient approach that maps UML
Activity Diagrams into EFSMs, providing a formal modeling of
the system under test (SUT) and utilizes JUnit and ModelJUnit
Java libraries to automatically generate test cases, using
coverage measures to evaluate them. Our approach aims to
overcome the limitations of automation in MBT, while achieving
efficient coverage and execution time metrics.

Keywords—Model-Based Testing; Automatic Test Case
generation; Activity Diagram; Extended Finite State Machine;
ModelJUnit; JUnit

I. INTRODUCTION
Software engineering is a field that employs a methodical

and structured approach to the development, operation, and
maintenance of software systems [1]. The goal of software
organizations is to develop and deliver software within
specified timeframes and budgets [2]. However, software
development, particularly for complex systems, is prone to
human errors, necessitating the assessment of software for
errors during source code generation [3]. Software testing
plays a crucial role in identifying faults and is a vital but costly
phase in software development and maintenance. One of the
most challenging aspects of testing is generating test cases,
which is essential to ensure the success of the testing phase
[4].

Modeling techniques can enhance software testing
productivity when used in this context [5]. Model-based test
case generation (MB-TCG) is a methodology that involves the
generation of tests using system models, which are based on
model-based testing (MBT) [6]. Using MBT allows testing to
begin early in the software development process, running tests
without requiring access to the source code of the system
under test, owing to its black-box nature. This technique uses
system models to generate and execute test cases
automatically, reducing testing time and effort [7].

 Unified Modeling Language (UML) is a popular option
for software modeling as it offers a high level of
expressiveness [8]. Activity Diagram is the most used UML
diagram in model-based test case generation [6]. UML
Activity Diagram is a semi-formal specification that can be
used to describe the workflow of the system and captures
critical system behaviors [9]. Although this Diagram is widely
used in this field, there is a lack of automated techniques for
test generation from UML activity diagrams [10]. In addition
to the mentioned problem, due to the lack of formal semantics,
the use of UML diagrams can lead to inconsistency,
transformation problems, and different interpretations [5].
Another issue of note is that UML specification presents a
challenge in terms of navigation and comprehension [11].

Using formal models is one approach to mitigate these
issues, as they offer precise semantics for representing system
behavior [8]. Finite State Machines (FSMs) are a favorite
notation in formal system modeling and testing software [5].
Although, formal models are rarely used in practice, probably
because developers lack the necessary training and familiarity
with the mathematical notation [11].

Formal models are highly recommended in Model-Based
Testing (MBT) due to their ability to automate the testing
process, resulting in improved efficiency and effectiveness
[5]. Extended finite state machine (EFSM) is one of the formal
models that have received significant attention and extensive
study over the past few decades [12]. An EFSM model is an
enhanced model based on FSM. This model can represent
many complex systems containing both control and data parts
[13].

In the context of this paper, we propose an efficient and
systematic approach that maps UML Activity Diagrams into
EFSM following some transformation rules. By using JUnit
and ModelJUnit Java libraries, test cases are automatically
generated from EFSM. The main contribution of this paper is
the definition of transformation rules to map the various
elements of the UML Activity Diagram into constructions of
the Extended Finite State Machine (EFSM). Furthermore, to
tackle the issue of complexity and understandability of the
UML specification problem, we utilize an updated version of
the metamodel for UML Activity Diagrams, specifically
tailored for simplicity and applicability while ensuring a close
alignment with the EFSM metamodel used in our research.

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

26

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

https://doi.org/10.51408/csit2023_05

The rest of this paper is organized as follows: Section II
describes some related research. Afterwards, Section III
presents UML Activity Diagram and Extended Finite State
Machine. Section IV describes our approach and its
implementation. In Section V, the results obtained by
implementing the proposed approach on a sample scenario
have been discussed. Finally, the conclusion and future work
are placed in Section VI.

II. RELATED WORK

Numerous research studies have been conducted on the
subject of generating test cases from UML Activity Diagrams.
One of the most relevant related works in the area of
automated test case generation from UML models is the article
by Smith et al. [5]. They proposed an approach for generating
test cases from UML sequence diagrams using Extended
Finite State Machines (EFSMs). Their approach showed
promising results, but one of its weaknesses was that it only
worked for sequence diagrams. We built our work upon the
approach proposed by this article, but we extended it to work
with UML activity diagrams (AD) since ADs are more
commonly used in software development, as shown in a recent
survey [6]. Our approach can generate test cases that cover a
wider range of scenarios since Activity diagrams can model
more complex behavior and allow for more varied interactions
between objects than sequence diagrams [14].

In [15], the authors propose an approach for generating
scenario-based test cases from UML Activity Diagrams. The
proposed approach utilizes an intermediate model named
Extended Activity Dependency Graph (EADG), which
extends activity graphs to generate test scenarios. However,
this approach differs from ours in that it does not utilize
model-driven engineering (MDE) concepts or formal models
for test generation.

In [16], the authors propose a novel method for generating
test cases using UML Activity and Sequence Diagrams. Their
approach involves the conversion of Sequence Diagram into a
graph, which refers to Sequence Graph, and transforming the
Activity Diagram into the Activity Graph. Test suite
generation is achieved by merging the graphs into a single
software graph. While this methodology shares similarities
with ours, it diverges by not employing MDE concepts or
formal models for test generation. Moreover, the approach
necessitates the manual creation of both Activity and
Sequence Diagrams, which can make it difficult to use the tool
for more complex software systems.

III. BACKGROUND

A. Activity Diagram
Using an Activity Diagram in UML allows us to model the

dynamic characteristics of systems [17]. Use cases or business
processes can also be described with an activity diagram to
show how activities flow sequentially and to show logic [16].

An activity diagram is formally defined as a six-tuple D =
(A, T, F, C, aI, aF), where A is a finite set of A ⊆ ℙ(S)
representing activity states, T is a finite set of T ⊆ ℙ(Y)
denoting completion transitions. F ⊆ {A × T} ∪ {T × A}
signifies the flow relation connecting activities and
transitions. C is a finite set C ⊆ G(T) representing guard
conditions, and ci is in correspondence with ti, and Cond(ti)

= ci. aI ∈ A is the initial state, and aF ∈ A is the final state.
There exists only one transition t ∈ T such that (aI, t) ∈ F, and
for any t' ∈ T, (t', aI) ∉ F and (aF, t') ∉ F [9].

In this paper, we use some of the most common elements
of an Activity Diagram, which are as follows:

• Initial Node: An InitialNode is a control node that
marks the beginning of a process or activity flow.

• Final Node: A FinalNode is a control node that marks
the completion of an activity or process flow.

• Executable Activity Node: ExecutableNode is a type
of action node that can contain executable behavior.

• Merge Node: A MergeNode is a control node that
merges multiple incoming control flows, allowing
for their convergence without any synchronization.

• Decision Node: A DecisionNode is a control node
that represents a decision point, where one of several
outgoing control flows is chosen based on a
condition or criteria evaluation.

• Input and Output Pins: Input and Output Pins
represent the transfer of data or objects between
activity nodes, where an Input Pin accepts values or
objects as input to an activity node, and an OutputPin
produces values or objects as output from an activity
node.

• Send and Receive Signal Actions: A Signal
represents inter-object communication without the
need for a reply, initiating an asynchronous reaction
in the receiver [8].

 Other elements of Activity Diagrams defined by UML 2.5
are not in the scope of this article.

B. Extended Finite State Machine
The Extended Finite State Machine (EFSM) is a well-

known formal specification technique that is commonly
employed to define the various states and actions of a software
system. This method is widely used to describe the behavior
of software systems in a precise and unambiguous manner
[18].

An EFSM can be formally represented by a 6-tuple (𝑠𝑠0, S,
V, I, O, T) where S is a finite set of states with initial state 𝑠𝑠0;
V is a finite set of context variables; I is a set of transition
inputs; O is a set of transition outputs; and T is a finite set of
transitions.

Each transition tx ∈ T can also be represented formally by
a tuple tx = (si, sj, Ptx, Atx, itx, otx), where si, sj are the origin
and target states of transition tx, and itx ∈ I represents the input
parameters of the beginning of the transition tx, such as events
that can be interpreted as special types of input parameters,
and otx ∈ O denotes the output results at the end of the
transition tx. Ptx represents the predicate conditions (guards)
with their respective context variables, and Atx denotes the
operations (actions) with their respective current variables.
EFSM models can be represented as a directed graph G(V, E).
The elements of V represent the states of an EFSM, and E
denotes its transitions [11].

27

IV. PROPOSED APPROACH

This section presents an automated approach for
generating test cases from UML activity diagrams using
EFSM. The methodology involves several steps that begin
with translating the UML activity diagram into a formal
EFSM model using Atlas Transformation Language. The
generated EFSM model is used to automate the test generation
process, where test cases are generated based on EFSM-based
methods. These methods provide coverage for different paths
and states within the system. ModelJUnit and JUnit libraries
are used to facilitate the generation of executable test cases.
Acceleo is then used to perform a Model-To-Text (M2T)
transformation, converting the generated test cases from a
model representation into a textual representation that can be
executed.

A. Metamodeling Constructs
In order to establish a clear and structured foundation for

our research, we defined two metamodels: the UML Activity
Diagram metamodel, which serves as a source for our model
transformation process, and the Extended Finite State
Machine metamodel, which represents the target model. To
implement these metamodels, we utilized the Eclipse
Modeling Framework (EMF) and represented them in Ecore.

The official UML specification [8] can be complex to
navigate and hard to understand. Therefore, this metamodel
has been heavily criticized, and the use of simplified
metamodels is prevalent in most of the literature on this
subject [11]. To address this issue, a simplified metamodel for
the Activity Diagram is proposed in this study, depicted in Fig.
1, in comparison to the metamodel specified by the OMG.

The proposed metamodel contains 19 metaclasses and
eliminates constructs that are not frequently used in practice.
By streamlining the metamodel, it is easier to understand and
apply in practice, providing a more practical and
straightforward approach to Activity Diagrams.

 As shown in Fig. 2, the metamodel used for EFSM is
comprised of six metaclasses, with EFSM serving as an
abstraction of an Extended Finite State Machine. Within the
EFSM entity, there are states, transitions, and context
variables [5].

B. Metamodels Transformation Principles
A detailed description of the rules for transforming an

Activity Diagram into an Extended Finite State Machine is
provided in this section. The defined transformation rules are
listed below:

• RInitialNode: For the node of type InitilalNode, first
an EFSM is created with the same name of the AD,
then initial state S0 is added to it. The initial state is
used to update both the previous state and the current
state.

• RDecisionNode: RDecisionNode rule operates in
two stages, depending on the type of decision node
being processed. For each conditional decision node,
this rule creates one new state and two new
transitions. The transition with a guard of "true"
leads to the newly created state, while the transition
with a guard of "false" returns to the previous state.

For switch decision nodes, this rule creates a new
state and transition for each guard. Regardless of the
type of decision node, each transition has output,
guard, and action labeled with the guard of the
specific control flow, and any output pin from the
node before the decision node is treated as the
transition's input. After creating each new state, this
rule updates both the previous and current states.

Fig. 1. Activty Diagram Metamodel

Fig. 2. Extended Finite State Machine Metamodel [5]

• RMergeNode: This rule handles merge nodes in the
Activity Diagram (AD) by creating a new transition
for each node that has a control flow leading to the
merge node. These transitions do not have any
output, guard, or action, but any output pin of the
nodes connected to the merge node is considered to
be a corresponding transition's input. The transitions
all lead to the state that was already created for the

28

node after the merge node using the
"RActivityNode" rule. After creating these
transitions, both the previous and current states are
updated.

• RSignalActivityNode: For nodes of type
ExecutableActivityNode, SendSignalActionNode,
and ReceiveSignalActionNode, this rule creates a
new state and transition. The new state is connected
to the previous state using the transition, and all pins
of the corresponding node in the AD are considered
as inputs for the transition. Additionally, this rule
checks all control flows of a node to see if any flow
goes backward without any conditions. If such flows
exist, a new transition is created to connect the
corresponding states to each other, and the inputs of
these transitions are labeled as previously explained.
After creating these new states and transitions, the
previous and current states are updated as usual.

Our implementation of the transformation rules relied on
Atlas Transformation Language (ATL).

In this study, we are utilizing a slightly modified version
of some of the lazy rules proposed in [5], in combination with
our matched rules. Specifically, the following lazy rules are
employed:

• LrInitialState: The initial state S0 is created,
followed by incrementing the state order. Both the
previous state and the current state are updated to the
newly created initial state. Additionally, the name of
the Activity Diagram is stored in a variable.

• LrState: A new state is generated, the state order is
incremented, the previous state is updated to the
current state, and the current state is changed to the
newly created state.

• LrTransition: A transition is established, connecting
the previous state to the current state. The transition's
input is labeled with the input/output pin of the
Activity Diagram. The output, guard, and action can
be null and depend on the type of the activity node.

In our study, we used an automatic four-step approach for
generating test cases. This approach involves implementing
the EFSM model interface, implementing the adapter,
generating the test cases, and then concretizing them. These
four steps were automatically generated using Acceleo.

V. EXPERIMENT
This section presents an overview of our proposed

approach, as well as the results and a discussion of the
experiment.

A. Case Study
This section describes a case study demonstrating the

practical application of our approach. The UML Activity
Diagram in Fig. 3, depicts an ATM (Automatic Teller
Machine) withdrawal process. Initially, we created an Activity
Diagram model that described the behavior of the system,
using the Activity Diagram editor implemented in the EMF.
To transform this Activity Diagram model into an executable

model, we utilized the transformation rules implemented in
ATL.

After the execution of the transformation rules, we
obtained an EFSM model that reflected the behavior of the
system. Fig. 4 illustrates the resulting EFSM model that was
generated. We created this model using the Visual Paradigm
Drawing Tool by utilizing the XML output file generated from
executing the transformation rules on the ATM Activity
Diagram.

Fig. 3. ATM Activity Diagram

Fig. 4. ATM EFSM Model

Afterwards, we followed the 4-step automatic approach,
as previously described, to generate test cases using classes
AtmModel, AtmAdapter, AtmTest, and AtmJUnit. These
classes were obtained through the implementation of the four
steps in the approach. Finally, our approach was put to the test
through a series of test cases designed to assess its
effectiveness. To execute the tests, we utilized the Eclipse
Modeling Framework (EMF) in conjunction with the
ATMTest and ATMJUnit classes.

29

Reflecting the importance of coverage criteria to test
engineers when creating the test cases [19], we used three
distinct coverage types to evaluate the application of our
approach. A test model can be represented by an abstract
regular set P ⊆ Σa, where Σ is an alphabet denoting possible
actions, and a ∈ N ∪ {∗} indicating that each test can have
any length. Considering the fact that P may be huge or even
infinite, including 'a' in N ∪ {∗} means that tests can vary in
length within specific boundaries [20]. As a result, coverage
criteria can be outlined as in Definition 1.

Definition 1 (coverage). A set of tests S ⊆ P is said to cover
a test-model P ⊆ Σa under the coverage criteria C = {C(i)}i∈I,
C(i) ⊆ Σa if ∀i ∈ I : (C(i) ∩ P ≠ ∅ ⇒ C(i) ∩ S ≠ ∅) and
∪i∈I C(i) = Σa, where the index set I is used to name the
coverage sets and the coverage sets C(i) are used to identify
the aspects that are covered by the tests [20].

During testing, we tracked state, action, and transition
coverage metrics for each individual test case, as presented in
Table I. The state coverage metric indicates the number of
states visited, and its formula can be expressed as (1), where
|SV| is the number of states visited during testing and |TS| is
the number of total states.

state coverage = (|SV|/|TS|) ×100 (1)

 The action coverage metric reflects the number of actions
performed during testing. The action coverage formula is
given by (2), where |AP| is the number of actions performed
during testing and |TA| is the number of total actions.

action coverage =(|AP|/|TA|) ×100 (2)

 The transition coverage metric measures the number of
transitions that were visited. The transition coverage formula
is shown in (3), where |TV| is the number of states triggered
during testing and |TT| is the number of total transitions.

transition coverage = (|TV|/|TT|) ×100 (3)

Prior to initiating the tests, we established initial values for
the card attribute (111), psw attribute (123), and balance
attribute (100.00) belonging to the Bank class of the SUT.

B. Obtained Results
The generated test cases and the results obtained from their

execution are all reported in Table I. We have also included a
visually informative bar chart, shown in Fig. 5 to illustrate the
metrics associated with each test case.

Fig. 5 displays the coverage metrics for each test case
generated using our approach. It is important to note that the
possible number of states, actions, and transitions that can be
visited may vary depending on the specific test case and its
associated parameters.

In particular, for the initial set of generated test cases, the
total number of states in the ATM system is determined to be
14 based on the EFSM representation in Fig. 2. However,
since the value is not generated within the scope of the test
cases T1, T2, and T3, the actual number of states that can be
visited is reduced. According to our EFSM analysis, only 5
states are possible to be visited, given the absence of the
value.

Similar considerations apply to the transition coverage.
For action coverage, all possible actions are performed by
executing each test case. Note that the same explanation
applies to all the other generated test cases, where the
coverage metrics should be interpreted within the context of
each individual test case.

C. Discussion
Our approach's novelty lies in its ability to automate the

entire testing process, with the exception of manually defined
stubs. To the best of our knowledge, the level of automation
we have achieved with ADs has not been reported before,
making our approach a valuable contribution to the field. To
further illustrate the superior automation achieved by our
approach, we conducted a comprehensive comparison with
three of the most automated and recent works in the field, as
shown in Table II.

TABLE I. GENERATED TEST CASES

Fig. 5. The state, action, and transition coverage, along with the execution
time (in milliseconds), for each generated test case

TABLE II. COMPARISON OF THE LEVEL OF AUTOMATION

Test
case card psw value State Action Trans. Time

(ms)

T1 111 123 5/14 12/12 60/144 6.0

T2 111 246 5/14 12/12 60/144 13.6

T3 222 246 2/14 12/12 24/144 7.2

T4 111 123 50 12/14 12/12 144/144 16.7

T5 111 123 200 12/14 12/12 144/144 23.5

Total _ _ _ 14/14 12/12 144/144 _

Approach Level of
Automation Description

M. Rocha et al. [11] Very High Achieves superior automation, but
not applicable to ADs.

A. Hettab et al. [15] Moderate Test data can only be generated
manually from the automatically
generated test scenarios.

Meiliana, I. et al [16] Fairly High Testing itself is automated, but the
approach necessitates the manual
creation of 2 UML diagrams.

Our approach High Automates the entire testing
process except for stubs.

30

 Direct comparison between works with different levels of
automation would not be valid [21]. Given that no other work
has reported achieving the same level of automation with
ADs, our proposed approach and the results obtained can only
be discussed in a more general sense. As outlined in Table I,
by executing all the generated test cases, we achieve complete
coverage of all EFSM actions, states, and transitions.
Furthermore, the efficiency of our approach is demonstrated
by the fact that it generates test cases in less than 1 second.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an automated model-based test
case generation approach using Activity Diagrams. To
formalize the activity diagrams, we proposed a simplified
metamodel that was used to map ADs to an EFSM
representation using some transformation rules. We then
applied a four-step approach to generate test cases, using JUnit
and ModelJUnit to execute the tests. Our approach was able
to achieve good coverage and time results, demonstrating the
effectiveness of our methodology.

As future work, other UML diagrams, such as state and
class diagrams, can be incorporated into the proposed test
generation process. Moreover, advanced testing techniques,
such as mutation testing, can be used to enhance the generated
test suite. Finally, our approach can be applied to a real-world
software system to further evaluate its effectiveness and
scalability.

REFERENCES
[1] F. Morsali and M. R. Keyvanpour, “Search-based software module

clustering techniques: A review article,” in 2017 IEEE 4th
International Conference on Knowledge-Based Engineering and
Innovation, KBEI 2017, 2018.

[2] N. Mottaghi and M. R. Keyvanpour, “Test suite reduction using data
mining techniques: A review article,” in 18th CSI International
Symposium on Computer Science and Software Engineering, CSSE
2017, 2018.

[3] S. Kashefi Gargari and M. R. Keyvanpour, “Comparative Analytical
Survey on SBST Challenges from the Perspective of the Test
Techniques,” International Journal of Information and
Communication Technology Research, vol. 14, no. 2, pp. 32–40, Jun.
2022.

[4] M. R. Keyvanpour, H. Homayouni, H. Shirazi, and H. Shirazee,
“Automatic software test case generation: An analytical classification
framework,” International Journal of Software Engineering and Its
Applications, vol. 6, no. 4, pp. 1-6, Oct. 2012.

[5] M. Rocha, A. Simão, T. Sousa, and M. Batista, “Test case generation
by EFSM extracted from UML sequence diagrams,” in Proceedings
of the International Conference on Software Engineering and
Knowledge Engineering, SEKE, 2019.

[6] M. L. Mohd-Shafie, W. M. N. W. Kadir, H. Lichter, M.
Khatibsyarbini, and M. A. Isa, “Model-based test case generation and
prioritization: a systematic literature review,” Softw Syst Model, vol.
21, no. 2, 2022.

[7] M. L. Mohd-Shafie, W. M. N. W. Kadir, M. Khatibsyarbini, M. A.
Isa, I. Ghani, and H. Ruslai, “An EFSM-Based Test Data Generation
Approach in Model-Based Testing,” Computers, Materials and
Continua, vol. 71, no. 2, 2022.

[8] “OMG Unified Modeling Language TM (OMG UML),” 2015.
[Online]. Available: http://www.omg.org/spec/UML/2.5

[9] M. Chen, P. Mishra, and D. Kalita, “Coverage-driven automatic test
generation for UML activity diagrams,” in Proceedings of the ACM
Great Lakes Symposium on VLSI, GLSVLSI, 2008.

[10] F. A. D. Teixeira and G. Braga E Silva, “Easytest: An approach for
automatic test cases generation from UML activity diagrams,” in
Advances in Intelligent Systems and Computing, Springer Verlag,
2018, pp. 411–417.

[11] M. Rocha, A. Simão, and T. Sousa, “Model-based test case generation
from UML sequence diagrams using extended finite state machines,”
Software Quality Journal, vol. 29, no. 3, 2021.

[12] R. Yang, Z. Chen, Z. Zhang, and B. Xu, “EFSM-Based Test Case
Generation: Sequence, Data, and Oracle,” International Journal of
Software Engineering and Knowledge Engineering, vol. 25, no. 4,
2015.

[13] J. Zhang, R. Yang, Z. Chen, Z. Zhao, and B. Xu, “Automated EFSM-
based test case generation with scatter search,” in 2012 7th
International Workshop on Automation of Software Test, AST 2012 -
Proceedings, 2012.

[14] M. L. Shoemaker, UML Applied: A .NET Perspective. Apress, 2004.
[15] A. Hettab, A. Chaoui, M. Boubakir, and E. Kerkouche, “Automatic

scenario-oriented test case generation from UML activity diagrams: a
graph transformation and simulation approach,” International Journal
of Computer Aided Engineering and Technology, vol. 16, no. 3, pp.
379–415, 2022.

[16] Meiliana, I. Septian, R. S. Alianto, Daniel, and F. L. Gaol,
“Automated Test Case Generation from UML Activity Diagram and
Sequence Diagram using Depth First Search Algorithm,” in Procedia
Computer Science, 2017.

[17] T. Ahmad, J. Iqbal, A. Ashraf, D. Truscan, and I. Porres, “Model-
based testing using UML activity diagrams: A systematic mapping
study,” Computer Science Review, vol. 33. 2019.

[18] X. Zhou, R. Zhao, and F. You, “EFSM-based test data generation with
Multi-Population Genetic Algorithm,” in Proceedings of the IEEE
International Conference on Software Engineering and Service
Sciences, ICSESS, 2014.

[19] V. Rechtberger, M. Bures, and B. S. Ahmed, “Overview of Test
Coverage Criteria for Test Case Generation from Finite State
Machines Modelled as Directed Graphs,” in Proceedings - 2022 IEEE
14th International Conference on Software Testing, Verification and
Validation Workshops, ICSTW 2022, 2022.

[20] A. Elyasaf, E. Farchi, O. Margalit, G. Weiss, and Y. Weiss,
“Generalized Coverage Criteria for Combinatorial Sequence Testing,”
IEEE Transactions on Software Engineering, May. 2023.

[21] M. Blackburn, R. Busser, and A. Nauman, “Why Model-Based Test
Automation is Different and What You Should Know to Get Started,”
in Proceedings of the International Conference on Practical Software
Quality and Testing, Washington, USA, 2004.

31

	I. Introduction
	II. Related Work
	III. Background
	A. Activity Diagram
	B. Extended Finite State Machine

	IV. Proposed Approach
	A. Metamodeling Constructs
	B. Metamodels Transformation Principles

	V. Experiment
	A. Case Study
	B. Obtained Results
	C. Discussion

	VI. Conclusion and Future Work
	References

