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Abstract—Some determinative sequent system (DS) for 

classical propositional calculus is introduced on the base of well-

known Tseytin’s transformation. It is proved that the system DS 

is polynomial equivalent to the resolution system R and cut-free 

sequent system PK–. Then we define the system SDS (DS with a 

substitution rule) and the systems SkDS (DS with restricted 

substitution rules, where the number of connectives in 

substituted formulas is bounded by 𝒌 ). It is proved that for 

every 𝒌 ≥ 𝟎 the system Sk+1DS has an exponential speed-up over 

the system SkDS in the tree form, and the system SDS is 

polynomially equivalent to the Frege systems. 

Keywords—Determinative sequent systems, substitution rule, 

proof complexities, polynomial equivalence, exponential speed-up. 

 

I. INTRODUCTION 

The existence of a classical propositional proof system, which 

has polynomial size proofs for all tautologies, is equivalent to 

saying that NP = coNP [1]. This simple observation has drawn 

attention in recent years to the formalisms of propositional 

logic for the study of questions of computational complexity. 

A hierarchy of propositional proof systems has been defined 

by main complexity characteristics (size) and the relations 

between these systems are currently being analyzed. New 

systems are discovered and, as a consequence, the 

computational power of the old ones is better understood. In 

[2-5], it was shown that the addition of restricted cut rule, 

different substitution rules or quantifier rules to some 

propositional systems induces an exponential speed-up. 

In this paper, some determinative sequent system (DS) for 

classical propositional calculus is introduced on the base of 

well-known Tseytin’s transformation. It is proved that the 

system DS is polynomially equivalent to the resolution system 

R and cut-free sequent system PK–. Then we define the system 

SDS (DS with a substitution rule) and systems SkDS (DS with 

restricted substitution rules, where the number of connectives 

in substituted formulas is bounded by 𝑘). It is proved that for 

every 𝑘 ≥ 0, the system Sk+1DS has an exponential speed-up 

over the system SkDS in the tree form, and the system SDS is 

polynomially equivalent to the Frege systems. 

 

II. PRELIMINARIES 

To prove our main result, we recall some notions and 

notations from [1-4]. We will use the current concepts of the 

unit Boolean cube (En), a propositional formula, a tautology, 

a proof system for propositional logic and proof complexity. 

The language of the considered systems contains 

propositional variables, logical connectives ¬, &, ˅, ⊃ and pa-

rentheses (, ). 

 

Considered Proof Systems 

a) Resolution system R proves a formula to be a 

tautology by showing that its negation, which is put into 

conjunctive normal form, is unsatisfiable. A literal is a 

propositional variable 𝑝 or a conjugate �̅�. A clause is a finite 

set of literals, where the meaning of the clause is the 

disjunction of the literals in the clause. Resolution has no fixed 

axioms. It has only one resolution rule: 

𝐶1 ∪ {𝑝}   𝐶2 ∪ {�̅�}

𝐶1 ∪ 𝐶2

. 

For every formula, by the well-known Tseytin’s 

transformation, we can obtain some unsatisfiable set of 

clauses ℭ, which is considered as a set of axioms, to which we 

apply the resolution rule until the empty clause is obtained. 

Substitution rule for the set of clauses ℭ is introduced as 

follows:  
ℭ

𝑆(ℭ)𝑝
𝐴,  where 𝑆(ℭ)𝑝

𝐴  denotes the set of results of 

substitution of the formula 𝐴  instead of the variable 𝑝 

everywhere in the clauses of the set ℭ , and generalized 

resolution rule for the formula 𝐴 

𝐶1 ∪ {𝐴}   𝐶2 ∪ {�̅�}

𝐶1 ∪ 𝐶2

, 

where 𝐴 is a literal or a substituted formula. By SR we denote 

the system R with the substitution rule and generalized 

resolution rule. If the number of connectives of substituted 

formulas is bounded by 𝑘, then the corresponding system is 

denoted by SkR. 

b) The system E (elimination system) was described in 

[1], where some new notions were introduced. 

Let 𝜑 be a propositional formula, 𝑃 = {𝑝1 , 𝑝2, . . . , 𝑝𝑛} be 

the set of all variables of 𝜑, and 𝑃′ = {𝑝𝑖1
, 𝑝𝑖2

, . . . , 𝑝𝑖𝑚
} (1 ≤

𝑚 ≤ 𝑛) be some subset of 𝑃. 

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

https://doi.org/10.51408/csit2023_06 32



The conjunct 𝐾  can be represented simply as a set of 

literals (no conjunct contains a variable and its negation 

simultaneously). 

Definition 2.1.1. Given = {𝜎1, 𝜎2, . . . , 𝜎𝑚} ⊂ 𝐸𝑚 , the 

conjunct 𝐾𝜎 = {𝑝𝑖1

𝜎1 , 𝑝𝑖2

𝜎2 , . . . , 𝑝𝑖𝑚

𝜎𝑚}  is called 𝜑  − 1-

determinative (𝜑 − 0-determinative) if assigning 𝜎𝑗  (1 ≤ 𝑗 ≤

𝑚)  to each 𝑝𝑖𝑗
 we obtain the value of 𝜑 (1 𝑜𝑟 0) 

independently of the values of the remaining variables. 

Definition 2.1.2. DNF 𝐷 = {𝐾1, 𝐾2 , . . . , 𝐾𝑟}  is called a 

determinative disjunctive normal form (dDNF) for 𝜑 if 𝜑 =
𝐷  and every conjunct 𝐾𝑖  (1 ≤ 𝑖 ≤ 𝑟) is 1-determinative for 

𝜑. 

The axioms of E are not fixed, but for every formula 𝜑 

each conjunct from some dDNF of 𝜑 can be considered as an 

axiom. 

The elimination rule (ε-rule) infers 𝐾′ ∪ 𝐾′′  from the 

conjunct 𝐾′ ∪ {𝑝}  and 𝐾′′ ∪ {�̅�} , where 𝐾′  and 𝐾′′  are 

conjuncts and 𝑝 is a variable. 

DNF 𝐷 = {𝐾1, 𝐾2 , . . . , 𝐾𝑙}  is called full (tautology) if, 

using the ε-rule, one can prove the empty conjunction (∅) from 

the axioms {𝐾1, 𝐾2 , . . . , 𝐾𝑙}. 

By the analogy to the systems SR and SkR, we can 

introduce the systems SE with a substitution rule and a 

generalization of the ε-rule, and SkE with restricted 

substitution rules. 

c) By PK is denoted the usual sequent system LK, where 

the rules are restricted to propositional logic. By PK– is 

denoted the sequent system PK without a cut rule. By PKk is 

denoted the sequent system PK with a cut rule, where the 

number of connectives of cut formulas is bounded by 𝑘 [6]. 

d) The Frege system 𝓕 uses a denumerable set of 

propositional variables, a finite, complete set of propositional 

connectives; 𝓕 has a finite set of inference rules defined by a 

figure of the form 
𝐴1𝐴2…𝐴𝑚

𝐵
 (the rules of inference with zero 

hypotheses are the axioms schemes); 𝓕 must be sound and 

complete, i.e., for each rule of inference 
𝐴1𝐴2…𝐴𝑚

𝐵
 every truth-

value assignment, satisfying 𝐴1𝐴2 … 𝐴𝑚, also satisfies 𝐵, and 

𝓕 must prove every tautology. 

 

Proof Complexity 

By |𝜑| we denote the size of the formula 𝜑, defined as the 

number of all logical sign entries in it. It is obvious that the 

full size of the formula, which is understood to be the number 

of all symbols is bounded by some linear function in |𝜑|. 

The proof complexities are considered for comparison of 

different proof systems. In the theory of proof complexity, the 

main characteristic of the proof is 𝑙– complexity, which is the 

size of a proof (= the sum of all formulae sizes). The minimal 

𝑙–complexity of a formula 𝜑 in a proof system Φ we denote 

by 𝑙Φ(𝜑). 

Definition 2.2.1. The system Φ1 p-simulates the system 

Φ2  if there exists a polynomial 𝑝() such that for each formula 

𝜑 provable both in the systems Φ1  and Φ2, we have 𝑙𝛷1(𝜑) ≤

𝑝(𝑙𝛷2(𝜑)). 

Definition 2.2.2. The systems Φ1  and Φ2  are p-

equivalent, if systems Φ1  and Φ2 p-simulate each other. 

Definition 2.2.3. If Φ2 p-simulates the system Φ1 and for 

some sequence of formulas 𝜑𝑛  in the two systems Φ1 and Φ2 

for sufficiently large 𝑛  is valid 𝑙𝜙1(𝜑𝑛) = Ω(2𝑙𝜙2(𝜑𝑛))), then 

we say that the system 𝜙2 has an exponential speed-up over 

the system 𝜙1. 

 

III. MAIN RESULTS 

We construct some determinative sequent system DS for 

classical propositional calculus using Tseytin’s 

transformation in sequent form and investigate their 

relationships with other proof systems. 

Let 𝜑 be some formula and {𝑝1, 𝑝2, . . . , 𝑝𝑛} be the set of 

its distinct variables (later we call them main variables). We 

will associate a new variable with every non-elementary 

subformula of 𝜑, where the negation of the subformula will 

be associated with the negation of the corresponding variable. 

We construct the system of determinative sequents as follows. 

1. If 𝛼, 𝛽, 𝛾  are variables associated correspondingly 

with the subformulas 𝐵 ∨ 𝐶, B, C, then the system of 

sequents will be {𝛽 → 𝛼;  𝛾 → 𝛼; �̅�, �̅� → �̅�}. 

2. For the subformula 𝐵&𝐶, the system of sequents will 

be {�̅� → �̅�; �̅� → �̅�;  𝛽, 𝛾 → 𝛼}. 

3. For the subformula 𝐵 ⊃ 𝐶 , the system of sequents 

will be {�̅� → 𝛼;  𝛾 → 𝛼;  𝛽, �̅� → �̅�}. 

The axioms of DS are not fixed, but for every formula 𝜑 

each above described determinative sequent can be considered 

as an axiom. 

The rules of inference are: 

cut rule:  
Γ → 𝑝    𝑝 → Δ

Γ → Δ
; 

Γ → Δ, 𝑝

�̅�, Γ → Δ
; 

𝑝, Γ → Δ

Γ → Δ, �̅�
 , 

where 𝑝 is a literal and if 𝑝 is a negation of some variable, 

then �̅� is a variable itself. 

If the formula 𝜑 is associated with a variable 𝑠, then the 

sequent → 𝑠 will prove in DS iff the formula 𝜑 is a tautology. 

Theorem 1. The system DS is 𝑝-equivalent to the system 

E. 

Proof sketch. Let 𝑃  be a tree-like proof of → 𝑠 

corresponding to the formula 𝜑  in the system DS with the 

minimal size. We can construct 𝜑-determinative conjuncts as 

follows. For every path 𝑖 between two vertices, one of which 

is associated with an axiom and the other with a sequent → 𝑠, 

we construct a conjunct 𝐾𝑖  as the set of all main variables 

occurring in the sequents of this path. On top of all these 𝜑-

determinative conjuncts, we can construct a 𝜑-proof in the 

system E. In the opposite direction, the proof can be given by 

analogy with the proof, given in the second paragraph of [2]. 

Theorem 2. The system DS is 𝑝 -equivalent to the 

resolution system R. 

The proof is obvious, taking into consideration that i) 

axioms in both systems created by Tseytin’s transformation 

are like the systems of disjuncts in R and the systems of 

sequents in DS, ii) the inference rules are “equivalent” to each 

other. 

If we add a substitution rule to the system DS, we can also 

introduce the corresponding generalized rules for a formula 

𝐴: 
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Γ → 𝐴    𝐴 → Δ

Γ → Δ
; 

Γ → Δ, 𝐴

�̅�, Γ → Δ
; 

𝐴, Γ → Δ

Γ → Δ, �̅�
 , 

where 𝐴  is a literal or a substituted formula. By SDS we 

denote the system DS a with substitution rule and the above 

generalized rules. If the number of connectives of substituted 

formulas (therefore cut formula) is bounded by 𝑘  then the 

corresponding system is denoted by SkDS. 

From the above theorems and results of [4], we can prove 

the following corollaries: 

Proposition 1. The system DS is 𝑝-equivalent to the system 

PK–. 

Proposition 2. For every  𝑘 ≥ 0 , the system SkDS is 𝑝 -

equivalent to the system PKk, and Sk+1DS has an exponential 

speed-up over the system SkDS in the tree form. 

Proposition 3. The system SDS is 𝑝-equivalent to the system 

PK. 

Proposition 4. The system SDS is 𝑝-equivalent to the Frege 

systems. 

 

IV. CONCLUSION 

Tseytin’s transformation allows for every propositional 

formula 𝜑  to construct a system of axioms (disjuncts, 

sequents), on the base of which one can check whether the 

formula is a tautology or not. The sum of all such axiom sizes 

is no more than 6| 𝜑 |. If we consider the disjuncts from 

conjunctive normal form for the negation of 𝜑 or 

determinative conjuncts from dDNF of 𝜑 as axioms, then the 

sum of axiom sizes can be exponentially larger than |𝜑|, but 

our results show that the size of proofs in both cases are nearly 

the same. 
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