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Abstract—Zero-knowledge Range Proof(ZKRP) has gained
increasing interest due to its applications in blockchain and
cryptocurrencies in particular. ZKRP provides a mechanism to
prove that a hidden integer belongs to a given interval without
revealing any information about hidden integers. Some ZKRP
depends on an honest and reliable third party. Others avoid
from the third party. Currently, one of the famous ZKRP is
the so-called Bulletproofs proposed by Bunz et al. Applying
well-known homomorphic encryption methods in realizing
ZKRP is a prospective direction. This paper proposes a new
ZKRP based on one of the well-known homomorphic encryption
methods- the order-preserving encryption method.

Keywords— Zero Knowledge Proof, Range Proof, Order Re-
vealing Encryption

I. INTRODUCTION

Zero-knowledge proof is a protocol that allows one part,
the so-called prover, to convince another part, the so-called
verifier, of an assertion without revealing any further in-
formation beyond the fact that the assertion is true. ZKP
is applied in various applications in which a computation’s
correctness must be verified by many other parties. It can be
applied to a variety of real-world use cases, including identity
protection, authentication, autonomous payments, scalability,
and decentralized voting systems. One of them is a Zero-
knowledge range proof (ZKRP). ZKRP scheme allows to
prove that a secret integer belongs to a certain interval without
revealing any information about secret integer. The first ZKRP
protocol was presented in 1995 by Damgard [6] and in 1997
by Fujisaki and Okamoto [7]. The first practical construction
was proposed by Boudot in 2001 [3]. In 2016, Bunz et al. [4]
proposed a new idea for constructing ZKRP with a very small
proof size, which they called Bulletproof. The idea, similar to
some other schemes, is to decompose the secret into the bit
representation and, using the ”Inner product proof” method,
to prove that it belongs to the interval.

The next approach for ZKP is ZK-SNARK(Zero-Knowledge
Succinct Non-Interactive Arguments of Knowledge). The idea
of ZK-SNARKs is transforming the statement to be proved,
into an arithmetic circuit and building algebraic equations from
it. ZK-SNARKs are not quantum resistant. Once quantum
computing is largely available, the privacy technology behind
SNARKs will be broken.

There is another interesting cryptographic primitive
called Order Preserving Encryption-OPE(or Order Revealing

Encryption-ORE). ORE is a deterministic symmetric encryp-
tion scheme the encryption algorithm of which produces
ciphertexts that preserve numerical ordering of the plaintexts.
OPE was proposed by Agrawal et al. [1] in 2004 as a tool
to support efficient range queries on encrypted data. The first
formal cryptographic treatment of OPE scheme was given by
Boldereva et al. [2]. A number of OPE schemes have been
proposed in recent years [1, 2, 10, 5, 8]. Unfortunately, all
these ORE schemes are not efficient to be used in practice.
Concurrent with these works, Lewi and Wu [9] presented
a new and efficient ORE scheme, which is based on the
work of Chenette et.al. [5]. The ORE construction proposed
by Lewi and Wu leaks less information about the encrypted
numbers,which is an important advantage. In this paper, the
author proposes to transmute [9] into an efficient ZKRP
scheme. As the proposed scheme is based on [9], its short
description is given below. In [9], the large-domain ORE
scheme consists of three parts: Setup, Encryption(left, right)
and Compare. Right encryption is used for encrypting values
stored on the server side. During the right encryption process,
for each digit xi of the value to be encrypted, d digits (where
d is the radix) of Z3 are generated, which are the comparison
output of xi and every element of radix. These numbers are
then permuted via the permutation function. Thus, each value
is represented as a d × n table of elements of Z3, where
n is a maximal number of digits of upper endpoint. Each
element of the table is encrypted, and the table is stored
in the database. Left encryption is used only for making a
search query. During the left encryption, each digit of the
encrypting value is permuted via the permutation function and
encrypted. The server via the ”Compare” algorithm compares
the left encrypted value with the right encrypted value without
revealing both of them.

It is easy to see that the structure of the ”Large ORE
Scheme” in [9] allows us to modify the ORE scheme to ZKRP
in the following manner: encrypt the endpoints of the range
interval via the right encryption algorithm on the verifier’s
side, encrypt the secret value via the left encryption in the
prover side. Then the prover sends the secret value to the
verifier. The latter verifies if the secret value is smaller than
the upper endpoint and bigger than the lower endpoint. In order
to provide completeness and soundness for the new ZKRP it is
important to design a new key management system. Recall that
completeness means that the verifier accepts the proof if the
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statement or assertion is true. In other words, an honest verifier
will always be convinced of the true statement by an honest
prover. Soundness means that in the case of false fact the
verifier rejects the proof, which indicates that a cheating prover
can cheat an honest verifier with a negligible probability. The
other important property of ZKRP is a trusted setup. Many
ZKRP constructions depend on a trusted party. A trusted
party generates and provides necessary parameters for both
prover and verifier. Some ZKRP algorithms avoid the trusted
setup[8], which is an obvious advantages. The proposed ZKRP
scheme assures completeness and soundness and minimizes
the dependence on a trusted setup. The data concerning the
algorithm’s performance, security parameters and other details
will be presented in a full paper to be prepared.

II. NEW APPROACH FOR ZKRP PROTOCOL

In this chapter, a novel non-interactive ZKRP- a modifi-
cation of the Levi and Wu ORE scheme, is proposed. The
proposed ZKRP algorithm is a tuple of three algorithms
(Setup, Prove, Verification).

The Setup algorithm (setuper) samples the pair of secret
keys SK{k1, k2}

R←− {0 : 1}λ and sends it to Prover. After
that, pads 0’s on the left at the upper (lower) endpoint in
such a way that the number of digits of the upper (lower)
endpoint is equal to n where n is the maximal number of
digits of the upper endpoint. Next, 2n length d-ary array P
is generated. Recall that d is a radix of the system. Then
randomly samples n numbers pi ∈ [0; d] i = 1 . . . n and these
numbers are inserted into randomly chosen n places in array P.
The Setuper also sends array P to Prover. After that, the upper
(lower) endpoint’s digits are sequentially inserted into the free
places. The next setup algorithm encrypts the 2n length array
in which the upper(lower) endpoint is embedded.

The next setup algorithm encrypts the upper and lower
endpoints and sends them to the Verifier. The upper and lower
endpoints are encrypted via the Right encryption scheme.

The Prover generates a proof, i.e., encrypts the hidden value
and sends it to the Verifier for verification. For this end, The
Prover pads 0’s from the left in the hidden value in such a
way that the number of digits of the hidden value is equal
to n. Then The Prover sequentially inserts the hidden value’s
digits into the array P (recall that in array P there are n free
places) which he has received from the Setuper. The hidden
value is encrypted via the left encryption scheme [?].

The verification algorithm compares two 2P length en-
crypted arrays (upper and lower endpoints) with a 2P length
hidden value and verifies the statement if the hidden value is
less than to the upper endpoint and greater than to the lower
endpoint. It is easy to see that randomly added numbers cannot
impact on verification algorithm because in both arrays they
are the same.

III. PERFORMANCE AND MEMORY REQUIREMENTS

To encrypt a hidden value, one should encrypt all 2n digits
one by one. To encrypt separate digits, it is necessary to
do 2 encryption operations and one permutation operation.

Thus, to encrypt a single hidden value, it is necessary to
do 4n encryption and 2n permutation operations. To verify
the hidden value, the Verifier should compute the hash value
up to 2 × 2n times. Processing encryption of a 32-bit value,
presented as a d = 8-ary string, on a laptop (16GB RAM and
2.3GHz Intel Core i7GPU), requires ≈ 800µs of computation.
This parameter is also called proving time. And for processing
verification, it requires ≈ 4µs of computation. The volume
of encrypted endpoints is ≈ n × d bytes, which is a quite
acceptable volume for practical applications.
One of the desired parameters of ZKRP is the proof size. The
proof size refers to the number of bytes the proof takes. For
the proposed ZKRP, the proof size i.e., the length of the hidden
value is 17 bytes when d ≤ 256.

IV. CONCLUSION

In this paper, the concept of a novel non-interactive ZKRP
scheme, which is based on the ORE scheme [9], is given. The
proposed ZKRP concept requires an honest and reliable third
party, which is a big disadvantage. However, the proposed
method offers pretty good performance and can be useful for
systems, where a trusted party is necessary. The follow-up
research is planned to concentrate on the complete exclusion
of a trusted third party and security proof of the proposed
scheme.
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