
Enhancing S2E to Analyze Multi-Thread Programs

Fedor Niskov
MSU, ISP RAS

Moscow, Russia

e-mail: fedor.niskov@ispras.ru

Egor Kutovoy
MIPT

Moscow, Russia

e-mail: kutovoi.ea@phystech.edu

Shamil Kurmangaleev
ISP RAS

Moscow, Russia

e-mail: kursh@ispras.ru

Abstract — Code analysis for defect detection is very

important in the modern world, especially in the case of complex

multi-thread applications. An example of a tool, suitable for

software of high complexity, is the famous S2E, which allows for

full-system emulation with symbolic execution. This paper

presents several major enhancements for S2E, including: firstly,

support for multiple virtual cores, allowing to have parallel

speed-up; secondly, on this basis, a race checker plugin to detect

defects of this sort in multi-thread programs. This development

has concerned such interesting points of research as scheduling

in multi-core emulation and race detection with symbolic

execution.

Keywords — S2E, full-system emulation, symbolic execution,

multi-threading, race detection, parallel speed-up.

I. INTRODUCTION

Code analysis is a very important research direction

nowadays. Special analysis tools are required to find defects

in complex modern software. Today developers design their

programs to leverage parallel capabilities of multi-core

processors, so multi-thread programs are quite widespread,

and they also need to be analyzed – such heisenbugs as races

are hard for manual debugging and need special attention.

Many issues arise in code analysis. An important aspect is

making a proper environment for the target program. A

possible solution here is full-system emulation: not only the

target software is emulated, but also all related components,

including the operating system. A prominent example in this

area is the S2E [1][2] platform, allowing for symbolic

execution based on full-system emulation. Despite the

project’s definite success, there is a room for improvements

and new features.

This paper presents the results of our work – a set of

improvements to enhance S2E, which can be summarized as

two main achievements:

 Support for multiple virtual cores in parallel threads.

 Implementation of a race checker in the multi-core

emulator.

The following sections reveal the details of this work.

II. OVERVIEW OF S2E

First of all, it’s worth describing the general design of

S2E [1][2]. This is a platform for full-system emulation with

symbolic execution. The name means “Selective Symbolic

Execution”, i.e., some code is executed concretely, and some

– symbolically. S2E allows to make interesting bytes

symbolic, and to traverse the tree of possible states, i.e., to

explore the branches which these bytes influence. As a result,

a collection of input data variants is generated for code

coverage.

S2E is based on the Qemu [3] emulator – it is launched in

the KVM mode, but the original KVM module is replaced

with a special component (libs2e*.so, via LD_PRELOAD

and intercepting ioctl). The S2E library implements the

KVM interface – so it is responsible for emulation of the

processor and memory, while Qemu emulates the peripheral

devices and controls the whole process. The library uses a

modified TCG engine from Qemu for concrete execution and

the KLEE [4] framework for symbolic execution. The original

Qemu (v3.0) has been patched for integration with S2E.

The S2E library is compiled in three forms, which can be

briefly described as pre-snapshot, concrete, and symbolic

execution. The first form serves for limited concrete execution

(with many S2E features disabled) – to boot the virtual

machine and save a snapshot. The latter forms are used for

execution after loading the snapshot.

S2E is highly extensible – there is a number of built-in

plugins, and the user can write his own plugin in C++, on top

of the basic API.

Thus, S2E is an advanced complex technology. Let’s

emphasize several aspects subject to improvement. The

original S2E supports for only one virtual core – it precludes

parallel speed-up in multi-thread programs and influences

hardware-sensitive software. The Qemu component is based

on the old Qemu v3.0 – an upgrade can be favorable for

further development, including emulation of modern

peripherals. Finally, S2E provides a fine platform for extra

analysis checkers, and it’s convenient for implementation of a

new checker, aimed at race bugs in multi-thread programs.

III. SUPPORT FOR MULTIPLE CORES

The enhanced S2E supports for multiple virtual cores. In

brief, changes in the code for this purpose can be outlined as

follows:

 Support for multiple objects of the VCPU class

(representing virtual cores) – each of them acts in a

separate thread.

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

78

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

https://doi.org/10.51408/csit2023_16

 Several related global structures are made private

per-core; access to shared structures is protected.

 An execution state includes multiple core states (sets of

registers).

 Hybrid inter-core synchronization, combining parallel

and in-turn execution; a special scheduler controls cores:

▪ When AP-cores* execute the target code in the

concrete mode, they work simultaneously.

▪ Otherwise, cores are serialized by the scheduler.

 Other changes for consistency.
* Note: BSP-core – the core with ID=0, AP-core – a core with ID≠0.

The innovation of such multi-core scheduler should be

remarked, as opposed to the ordinary emulators, having only

a simple round-robin single-thread scheduler or an

uncontrollable form of multi-threading. The suggested

scheduler allows to gain the profits of parallelism, while

having a subtle control over cores – it can be beneficial for

analysis and debugging.

There is an important note about the development: as

mentioned above, the original Qemu component is based on

the old version v3.0; during this work, it has been upgraded to

v6.1. This modernization lets us use the advantages of the

newer Qemu, laying a solid foundation for our work on

parallelism and other directions.

This implementation has been tested on real software –

Suricata [5] – a multi-thread program, acting as an IDS/IPS

(Intrusion Detection/Prevention System). The following

testcase is considered: Suricata handles a large bunch of

packets with concrete data in parallel threads, then the final

packets with symbolic data. The experiment involves an

unmodified version of Suricata with a custom plugin

(packet-checking handler), which allows to achieve a high

workload for efficient parallelism. The system is configured

to ensure a proper testing environment and conditions for

parallelism in the aforesaid hybrid scheme.

The testing is successful: increasing the number of threads

makes it faster, showing a significant parallel speed-up, and

the symbolic functionality is correct – new inputs are

generated for code coverage. The speed-up diagram is shown

in Fig. 1 (up to 100 threads). The non-linearity has the

following reasons: the limitations of the hybrid scheme;

packet distribution is charged to a single thread; the

distribution is not completely balanced (some threads get

more packets than others); non-parallel code spoils speed-up

according to Amdahl’s law [6].

Thus, the testing has proven vitality of the suggested

solution. The enhanced S2E can gain the powers of modern

machines for high performance on many cores, and such

multi-core emulation can trigger new behaviours in

multi-thread applications, that can facilitate their analysis for

detection of concurrency defects, such as races.

IV. RACE CHECKER

Before describing our race checker for S2E, several

general notes should be made about the field of race detection.

As for the terminology in this paper, a (data) race means an

unsynchronized multi-thread access to the same shared

variable with writing. According to the classic approach, a

race checker should monitor shared variable access and mutex

operations in order to detect an unordered access. Typically,

it implies a certain formalization with order relations and

special clocks, such as vector clock, logical clock, Lamport

clock [7], etc. Existing algorithms can be classified by the

basic concept: happens-before-based (DJIT+ [8],

FastTrack [9], LiteRace [10], LOFT[11]), lock-set-based

(Eraser [12], Goldilock [13], paper [14]), and hybrid

(AccuLock [15], RaceTrack [16], Helgrind+ [17]). The most

eminent tools for race detection include Sanitizers [18]

(TSan [19]) and Valgrind [20] (Helgrind [21], DRD [22]).

There are also other related tasks in this area [23][24]:

deterministic multi-threading, record and replay, execution

synthesis, etc. Remarkable tools include CLAP [25],

Symbiosis [26], Cortex [27], ESD [28], ODR [29], Tern [30].

Our race checker follows the aforementioned classic

approach; it is mainly inspired by the DJIT+ [8] algorithm.

Firstly, let’s formalize the notion of a race.

As a prerequisite, the concept of happens-before (HB) is

needed. This is a strict partial order relation on the set of the

program’s events (E). Let ETt be the event of command

Fig. 1: The speed-up diagram for Suricata

79

execution in thread T at time t. The happens-before relation is

determined by the following rules:

 order in the same thread:

t1 < t2 ⇒ ETt1 ≺HB ETt2
 order between threads via a mutex:

t1 < t2 & unlockMi(ET1t1) & lockMi(ET2t2)
⇒ ET1t1 ≺HB ET2t2

Having this background, it’s possible to give a formal

definition of a (data) race:

Race ⇔ ∃ a, b ∈ E, var v :
 Accessv(a) & Accessv(b) & (Write(a) || Write(b))

 & ¬ (HB(a, b) || HB(b, a))

To track the happens-before relation in practice, the

concept of vector clock is used – an array of time counters,

each of them corresponding to a certain thread. Notably,

vector timestamps can be viewed as a join-semilattice

(regarding element-wise maximum and comparison).

For each shared variable, the checker keeps information

about the last reading and writing (the accessing thread and

the timestamp); each mutex has an associated timestamp; each

thread has its own vector clock instance. The checker

intercepts access to shared variables and mutex operations,

updating the timestamps accordingly. If some access has a

conflict with a previous one (as per the definition above: the

same variable, at least one writing, the timestamps are not

ordered), then the checker reports a race alarm.

According to the general design for such tools, the checker

is implemented as an S2E plugin.

This detection pairs well with symbolic execution: when

the symbolic engine traverses the tree of states, the checker

performs this analysis along the flow of each state, so the

engine can generate new inputs, including race-causing ones,

and the checker can detect the race there.

According to our experience, the usage of symbolic

features is a promising research direction. We augment the

capabilities of race detection, involving the symbolic engine

and building it all as an integral complex. Such tool is able to

achieve higher results than the original algorithm.

The race checker was also tested on Suricata. An artificial

race bug was inserted into the code: with certain values of

bytes in the input packets, a shared variable was incremented

without mutex protection. It incurred a race between

packet-handling threads, running on multiple virtual cores.

Eventually, the tool successfully found the race – the input

with the special values was generated and the checker detected

the race in this state.

V. CONCLUSION

Thus, two major improvements have been made to

enhance S2E. Firstly, the emulator now supports multiple

virtual cores, running in parallel threads – it allows to emulate

multi-thread programs with parallel speed-up. This work has

entailed vast changes in the codebase, including support for

multi-threading and modernization of related components. An

important research result here is the multi-core scheduler,

allowing to have advanced patterns of inter-core

synchronization. Secondly, a race checker has been

implemented on the base of S2E, and it can be useful to find

defects in multi-thread programs. Combination of symbolic

execution and race detection is a perspective research

direction. In total, our testing experience has shown many

positive effects of this enhancement, and inspires us for new

improvements.

REFERENCES

[1] (2023) The S2E website. [Online]. Available: https://s2e.systems

[2] V. Chipounov, V. Kuznetsov, G. Candea, “S2E: A platform for in-vivo
multi-path analysis of software systems”, ACM SIGPLAN Notices,

vol. 46, no. 3, pp. 265–278, 2011.

[3] F. Bellard, “QEMU, a fast and portable dynamic translator”,
Proceedings of the USENIX Annual Technical Conference (ATEC’05),

Berkeley, CA, USA, pp. 41–46, 2005.

[4] C. Cadar, D. Dunbar, D.R. Engler, “KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs”,

OSDI, vol. 8, pp. 209–224, 2008.

[5] (2023) The Suricata website. [Online]. Available: https://suricata.io
[6] G.M. Amdahl, “Validity of the Single Processor Approach to

Achieving Large-Scale Computing Capabilities”, AFIPS Conference

Proceedings, vol. 30, pp. 483–485, 1967.
[7] L. Lamport, “Time, clocks, and the ordering of events in a distributed

system”, Communications of the ACM, vol. 21, no. 7, pp. 558–565,

1978.
[8] E. Pozniansky, A. Schuster, “Efficient on-the-fly Data Race Detection

in Multithreaded C++ Programs”, PPoPP’03, pp. 179–190, 2003.

[9] C. Flanagan, S. N. Freund, “FastTrack: Efficient and Precise Dynamic
Race Detection”, PLDI’09, pp. 121–133, 2009.

[10] D. Marino, M. Musuvathi, S. Narayanasamy, “LiteRace: Effective
Sampling for Lightweight Data-Race Detection”, PLDI’09,

pp. 134–143, 2009.

[11] Y. Cai, W.K. Chan, “LOFT: Redundant Synchronization Event
Removal for Data Race Detection”, 22nd International Symposium on

Software Reliability Engineering, IEEE, pp. 160–169, 2011.

[12] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson,
“Eraser: A Dynamic Data Race Detector for Multithreaded Programs”,

ACM TOCS, vol. 15, no. 4, pp. 391–411, 1997.

[13] T. Elmas, S. Qadeer, S. Tasiran, “Goldilocks: a Race and Transaction-

Aware Java Runtime”, PLDI’07, pp. 245–255, 2007.

[14] P. Andrianov, V. Mutilin, and A. Khoroshilov, “An approach to

lightweight static data race detection”, Proceedings of the
Spring/Summer Young Researchers’ Colloquium on Software

Engineering, ISP RAS, vol. 8, 2014.

[15] X.W. Xie, J.L. Xue, “ACCULOCK: Accurate and Efficient Detection
of Data Races”, CGO’11, pp. 201–212, 2011.

[16] Y. Yu, T. Rodeheffer, W. Chen, “RaceTrack: Efficient Detection of

Data Race Conditions via Adaptive Tracking”, SOSP’05, pp. 221–234,
2005.

[17] A. Jannesari, K. Bao, V. Pankratius, W. F. Tichy, “Helgrind+: An

Efficient Dynamic Race Detector”, IPDPS’09, pp. 1–13, 2009.
[18] (2023) The Sanitizers project. [Online]. Available:

https://github.com/google/sanitizers

[19] K. Serebryany, T. Iskhodzhanov, “ThreadSanitizer: Data Race
Detection in Practice”, Proceedings of the Workshop on binary

instrumentation and applications, pp. 62-71, 2009.

[20] (2023) The Valgrind Project. [Online]. Available: https://valgrind.org
[21] (2023) Helgrind (The Valgrind Manual). [Online]. Available:

https://valgrind.org/docs/manual/hg-manual.html

[22] (2023) DRD (The Valgrind Manual). [Online]. Available:
https://valgrind.org/docs/manual/drd-manual.html

[23] J. Devietti et al., “Explicitly parallel programming with shared-

memory is insane: at least make it deterministic!”, Proceedings of
SHCMP, 2008.

[24] B. Kasikci, C. Zamfir, G. Candea. “Data Races vs. Data Race Bugs:

telling the difference with Portend”, ACM SIGPLAN Notices, vol. 47,
no. 4, pp. 185–198, 2012.

[25] J. Huang, C. Zhang, J. Dolby, “CLAP: Recording Local Executions to

Reproduce Concurrency Failures”, ACM SIGPLAN Notices, vol. 48,
no. 6, pp. 141–152, 2013.

[26] N. Machado, B. Lucia, L. Rodrigues, “Concurrency Debugging with

Differential Schedule Projections”, ACM SIGPLAN Notices, vol. 50,
no. 6, pp. 586–595, 2015.

[27] N. Machado, B. Lucia, L. Rodrigues, “Production-guided Concurrency

Debugging”, Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 1–12, 2016.

[28] C. Zamfir, G. Candea, “Execution Synthesis: a Technique for

Automated Software Debugging”, Proceedings of the 5th European
conference on Computer systems, pp. 321–334, 2010.

80

[29] G. Altekar, I. Stoica, “ODR: Output-deterministic replay for multicore
debugging”, Proceedings of the ACM SIGOPS 22nd symposium on

Operating systems principles, pp. 193–206, 2009.

[30] H. Cui et al., “Stable Deterministic Multithreading through Schedule
Memoization”, OSDI, vol. 10, pp. 1–13, 2010.

81

