
 Polymorphic Malware Analysis Model

Robert Hakobyan

National Polytechnic University of Armenia

Yerevan, Armenia

e-mail: rob.hakobyan@polytechnic.am

Timur Jamgharyan

National Polytechnic University of Armenia

Yerevan, Armenia

e-mail: t.jamgharyan@yandex.ru

Abstract — Thе paper presents the results of research on the

use of Kohonen neural network in the analysis of polymorphic
malware. The assessment of the quality of training was carried
out by the fuzzy logic method. The datasets for training the neu-
ral network are based on the source code of the polymorphic
malware abc, cheeba, december_3, stasi, otario, dm, v-sign, te-
quila, flip. Simulation of the Kohonen neural network operation
at different iterations and visualization of the results was carried
out.

 Keywords—Kohonen neural network, fuzzy logic, polymor-

phic malware, intrusion detection system, context triggered
piecewise hashing, InetSIM, REMnux.

I. INTRODUCTION

 When developing machine learning (ML) intrusion
detection systems (IDS), one of the tasks is to model the
behavior of various types of malware in various network
infrastructure (NI) operating environments. Malware develop-
ers use a variety of techniques and tactics to hide the source
code of malware, as well as apply ML techniques to develop
it. The use of various artificial neural networks and the ML
paradigm itself allows malware developers, using ML meth-
ods, to generate new versions of this software, the neutraliza-
tion of which is difficult by known methods. Malware is able
to adapt both to a specific operating environment and to a set
of protocols used in a given NI.

 In studies [1-4], various approaches to the application of
IDS in NI are considered. In particular, in [3], a consensus-
based IDS was considered, where a solution was proposed that
could bypass the restriction for centrally controlled IDS, since
initially attackers attack the IDS itself (this problem is relevant
for hosted IDS with centralized control). In [5] the ability to
apply the support vector machine algorithm was considered,
improving the granularity of malware detection at the time of
the study.

To detect malware, methods of static and/or dynamic (be-
havioral) analysis, program code or memory analysis [6]. An
important component in building a security architecture for an
NI is the IDS. However, the existing IDS are mostly
deterministic. As a rule, detection of the fact of an attack itself
is often difficult, since deterministic IDS are not able to detect
attacks that go beyond the rules and/or signatures of attack
detection.

The creation of IDS using ML is one of the important tasks
facing NI security researchers. The task of integrating into

IDS with ML a software component capable of detecting pol-
ymorphic malware is one of the most relevant.

Network security researchers offer various solutions for
integrating ML IDS with deterministic IDS [7-9]. But there is
a task, of preliminary assessment of network traffic for the
presence of a critical number of malware code segments, be-
yond which the SID goes beyond the boundaries of reliable
operation. Another task is the problem of efficient use of hard-
ware resources, since ML IDS with several neural networks
in its composition requires a huge hardware resource, alt-
hough the activation of all neural networks is not always nec-
essary. Also, the research task of creating an intermediate IDS
component with ML becomes relevant, which activates all or
specified neural networks from the composition of IDS with
ML, when the quantitative value of malware is exceeded.

This research presents the results of a study on the use of
Kohonen's artificial neural network to detect polymorphic
malware using the fuzzy logic method. The use of the Kohonen
artificial neural network is due to the fact that polymorphic
malware is able to independently change its source code, in-
creasing the number of possible and probable versions, and the
Kohonen neural network is one of the effective tools for re-
ducing and assessing the dimensionality of changes in mali-
cious polymorphic malware code variations.

The use of the fuzzy logic method as an assessment of the
quality of neural network training is that because it is rather
difficult to set boundary between polymorphic malware and
non-malware software, or malware non-polymorphic soft-
ware, but an artificial neural network trained on datasets pre-
viously structured using fuzzy logic, allows solving this prob-
lem, within the given constraints. Also, the use of fuzzy logic
makes it possible to improve the quality of neural network
training, since, unlike evaluation by binary methods (in par-
ticular, using the Matthews correlation [10]), the fuzzy logic
method allows you to determine the boundary of polymorphic
malware change, which allows you to quickly reconfigure the
IDS.

II. TERMS AND DEFINITION

A. Basic concepts

• Polymorphic malware - is malware characterized by the fol-

lowing behavior: encryption, self-propagation, and modifica-

tion of one or more components of the source code. It is de-

signed to avoid detection by being able to create modified

copies of itself [11-12].

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

85

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

https://doi.org/10.51408/csit2023_17

• VVV -Volume, Velocity, Variety, a set of characteristics for

Big Data [13].

• Fuzzy logic is a form of multivalued logic in which the true

values of variables can be any real numbers from 0 to 1 in-

clusive [14].

• Context-triggered piecewise hashing (CTPH) - method, cal-

culation of piecewise hashes from input data [15].

• Software-defined networking (SDN) - is a data transfer net-

work in which the network management level is separated

from data transfer devices and implemented in software [16]

B. Neural networks

• Kohonen neural networks (Fig.1) - is an unsupervised ML

algorithm the main element of which is the Kohonen layer.

This network is useful when the data is scattered over many

dimensions, and it is required to obtain them in a given num-

ber [17].

Fig. 1. Kohonen neural network

III. MODEL DESCRIPTION

The Hyper-V role is installed and an SDN is deployed in

a virtual environment based on the Windows Server 2016

Standard operating system [18], in which:

• Kali Linux OS with pre-installed software InetSIM, for

modeling various servers and protocols [19],

• Parrot OS which integrates the Metasploit framework that

allows you to download malicious polymorphic software

[20]. The malware used was abc, cheeba, december_3, stasi,

otario, dm, v-sign, tequila, flip obtained from sources [21-

24]. The datasets introduced into the operating environments

under study are subjected to a noise denoising procedure [25].

• REMnux OS [26] in which the Kohonen neural network is

installed in the Clion development environment. Kohonen

neural network is trained on the values of CTPH obtained

from datasets from malware abc, cheeba, december_3, stasi,

otario, dm, v-sign, tequila, flip. The size of the CTPH file is

20,40,80 bytes. To increase the reliability of the results, the

SDN using Hyper-V is displayed in a separate vlan (virtual

local network, vlan). Quantitative and qualitative results were

compared with the results obtained using the ssdeep software

[27] and the methods proposed in [28-29], as well as with the

virustotal service. The research scheme in SDN is presented

in Fig. 2.

Fig. 2. The research scheme in SDN

Stage 1.

The trained Kohonen neural network is disabled. Search and

detection of malware is carried out by the built-in REMnux

OS tools. The decision on whether the software belongs to a

malware type is made by analyzing the results obtained using

the REMnux OS.

Stage 2.

The trained Kohonen neural network is enabled. The decision

whether the software belongs to a malware or non-malware

type is based on fuzzy logic. The membership function of the

Gaussian type is described by (1) [30].

2

exp

x c
mf x (1)

where:

mf-membership function,

x-degree of membership in a fuzzy set,

c-center of fuzzy set,

σ - steepness of the membership function.

The block diagram of the integration of the Kohonen neural

network with the software that performs the comparison us-

ing the fuzzy logic method is shown in Fig. 3.

Fig. 3. Kohonen neural network with integrated module of fuzzy

logic

86

In active services deployed using InetSIM, datasets of

polymorphic malware with different value of the CTPH file

size are gradually introduced. The input of malware datasets

was carried out using the Metasploit framework. The re-

searches was conducted in 3 learning epochs, with 11 itera-

tions.

IV. RESEARCH RESULTS

Figures. 3, 4 and 5 show the visualization of the results of

the detection of polymorphic malware abc, cheeba, decem-

ber_3, stasi, otario, dm, v-sign, tequila, flip with a CTPH file

size of 20,40, 80 bytes.

Tables 1, 2, 3 present the numerical values of the detected

segments of polymorphic malware at a CTPH, file size of

20,40, 80 bytes per 50 MB of network traffic.

Fig. 4. Visualization of the detected polymorphic malware at 1

training epoch (11 iterations, CTPH value 20 bytes)

 Table 1

Number of detected segments of polymorphic malware

 with a CTPH value of 20 bytes

As can be seen from Fig. 4 and Table 1, certain polymor-

phic malware is classified binary (оtario), but the rest can

only be declared to belong to the type of malware with a cer-

tain probability (abc, cheeba, december,stasi, dm, v-sign, te-

quila, flip). Accordingly, the task arises to test this malware

in several epochs and iterations of the neural network in order

to more accurately determine the level of significance.

Fig. 5. Visualization of the detected polymorphic malware at 1

training epoch (11 iterations, CTPH value 40 bytes)

Reducing the step size of CTPH makes it possible to

increase the selectivity of the output results based on fuzzy

logic. The neural network, learning and retraining on data sets

formed on the basis of CTPH, with an increase in training

epochs, produces both binary results and results based on

fuzzy logic (not binary).

 Table 2

Number of detected segments of polymorphic malware

with a CTPH value of 40 bytes

Fig. 6. Visualization of the detected polymorphic malware at 1

training epoch (11 iterations, CTPH value 80 bytes)

87

 Table 3

Number of detected segments of polymorphic malware

with a CTPH value of 80 bytes

The application of the method makes it possible to carry

out a preliminary assessment of the presence of polymorphic

malware in network traffic and, accordingly, make a decision

on the activation / non-activation of other neural networks for

malware detection, which, in particular, allows for more effi-

cient hardware management.

V. IMPLEMENTATION

The implementation of the program code was made in the

Python programming language using the Tensor flow deep

learning library and the Keras library for the rapid implemen-

tation of neural networks. The Google Colab service [31] was

also used.

VI. CONCLUSIONS

The developed model allows a preliminary assessment of

network traffic for the presence of polymorphic malware.

Based on the results obtained, taking into account pre-formed

threshold values for the presence of malware for a given

amount of network traffic, it is possible to set an activation

policy for other components of the ML IDS.

With a decrease in CTPH, an increase in the degree of de-

tection of polymorphic malware is observed. With an in-

crease in the step of CTPH, the number of errors of the 1st

kind increases. The calculations were carried out on a Dell

Power Edge T-330 server. Software source code and all re-

search results are available at [32].

 REFERENCES

[1] A.Sayed, A.Aziz, A.Azar, A.Hassanien, S. Hanafy, (2014), “Negative
Selection Approach Application in Network Intrusion Detection
Systems”, (2014), https://doi.org/10.48550/arXiv.1403.2716

[2] A.Madbouly, A.Gody, T.Barakat, “Relevant Feature Selection Model
Using Data Mining for Intrusion Detection System”, (2014),
https://doi.org/10.14445/22315381/IJETT-V9P296

[3] M.Toulouse, B.Minh, P.Curts, «A consensus based network intrusion
detection system», (2015), https://doi.org/10.48550/arXiv.1505.05288

[4] P.Sree, I.Babu, “Towards a Cellular Automata Based Network Intru-
sion Detection System with Power Level Metric in Wireless Adhoc
Networks (IDFADNWCA)”, (2014),
https://doi.org/10.48550/arXiv.1401.4012

[5] R.Chen, K.Cheng, C.Hsieh, “Using Rough Set and Support Vector
Machine for Network Intrusion System”, (2010),
https://doi.org/10.48550/arXiv.1004.0567

[6] K.A.Monappa. Learning Malware Analysis.Explore the concepts,
tools, and techniques to analyze and investigate Windows malware.
Packt>. Birmingham-Mumbai. 2018

[7] F.Zhong et al, “MalFox: Camouflaged adversarial malware example
generation based on Conv-GANs against black—box detectors”,
(2020), https://arxiv.org/abs/2011.01509

[8] Dominik Kus et al, “A false sense of security? Revisiting the state of
machine learning-based industrial intrusion system”, (2022),
https://arxiv.org/abs/2205.09199

[9] K.Jallad, M.Aljnidi, M.Desoki, «Big data analysis and distributed deep
learning for next-generation intrusion detection system optimization”,
(2022) // https://arxiv.org/abs/2209.13961

[10] V.V. Starovoitov, Yu.I. Golub, “Comparative study of quality
estimation of binary classification”. Informatics. (2020), 17(1):87-101.
(In Russ.) https://doi.org/10.37661/1816-0301-2020-17-1-87-101

[11] Official website of Kaspersky anti-virus software. [Online]. Available:
https://encyclopedia.kaspersky.ru/knowledge/malicious-programs/

[12] K.Jallad, M.Aljnidi, M.Desoki, “Big data analysis and distributed
deep learning for next-generation intrusion detection system
optimization”, (2022) // https://arxiv.org/abs/2209.13961

[13] D. Laney, “3D Data Management:Controlling Data Volume, Velocity,
and Variety”, Application Delivery Strategies. Published by Meta
Group Inc. 6 February 2001.

[14] L.A.Zadeh, Fuzzy sets, Department of Electrical Engineering and
Electronics Research Laboratory, University of California, Berkeley,
California, USA https://doi.org/10.1016/S0019-9958(65)90241-X

[15] Kornblum, Jesse. (2006). Kornblum, J.: Identifying Almost Identical
Files using Context Triggered Piecewise Hashing. Digital Investigation
3(suppl.), 91-97. Digital Investigation. 3. 91-97.
10.1016/j.diin.2006.06.015.

[16] Benzekki, Kamal; El Fergougui, Abdeslam; Elbelrhiti Elalaoui,
Abdelbaki, «Software-defined networking (SDN): A survey». Security
and Communication Networks. vol. 9 (18),pp.5803–5833, 2016,
https://doi.org/10.1002%2Fsec.1737

[17] T. Kohonen, “Self-organized formation of topologically correct feature
maps”. Biol. Cybern, 43, 59–69, 1982.

[18] Microsoft official site. Windows Server 2016 Operating System
Download Page [Online].Available: https://www.microsoft.com/en-
us/evalcenter/download-windows-server-2016

[19] Kali Linux OS official site. Kali Linux Operating System Download
Page. [Online].Available: https://www.kali.org/

[20] Parrot OS official site. Parrot OS Operating System Download Page

 [Online].Available: https://www.parrotsec.org/

[21] Malware Bazaar Database. [Online]. Available
https://bazaar.abuse.ch/browse/

[22] Malware database. [Online]. Available http://vxvault.net/ViriList.php

[23] Malware repository. [Online]. Available https://avcaesar.malware.lu/

[24] Viruses repository. [Online]. Available: https://virusshare.com/

[25] T.Jamgharyan, «Research of the data preparation algorithm for training
generative-adversarial network», Bulletin of High Technology no. 19,
pp. 40-50, 2022.

[26] REMnux OS official site. REMnux Operating System Download Page

 [Online].Available: https://remnux.org/

[27] ssdeep software project website. [Online].Available

 https://ssdeep-project.github.io/ssdeep/index.html

[28] K.A. Tyurin, “Fuzzy hashing in information security problems” //
Obzor. NTSPTI. no. 1 (16), 2019. [Online].Available.
https://cyberleninka.ru/article/n/nechyotkoe-heshirovanie-v-zadachah-
informatsionnoy-bezopasnosti

[29] T. V. Jamgharyan, “Research of Obfuscated Malware with a Capsule
Neural Network”. Mathematical Problems of Computer Science, vol.
58, pp. 67–83, 2022, https://doi.org/10.51408/1963-0094

[30] L.Rutkowski. “Artificial neural networks. Theory and practice”, Hot
line - Telecom, 2010.

[31] Official website of data analysis and machine learning Colaboratory.
[Online].Available: https://colab.research.google.com

[32] Software source code and all research results,

 [Online]. Available: https://github.com/T-JN?tab=repositories

88

https://doi.org/10.48550/arXiv.1403.2716
https://doi.org/10.14445/22315381/IJETT-V9P296
https://doi.org/10.48550/arXiv.1505.05288
https://doi.org/10.48550/arXiv.1401.4012
https://doi.org/10.48550/arXiv.1004.0567
https://arxiv.org/abs/2011.01509
https://arxiv.org/abs/2205.09199
https://arxiv.org/abs/2209.13961
https://doi.org/10.37661/1816-0301-2020-17-1-87-101
https://encyclopedia.kaspersky.ru/knowledge/malicious-programs/
https://arxiv.org/abs/2209.13961
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1002%2Fsec.1737
https://www.microsoft.com/en-us/evalcenter/download-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/download-windows-server-2016
https://www.kali.org/
https://www.parrotsec.org/
https://bazaar.abuse.ch/browse/
http://vxvault.net/ViriList.php
https://avcaesar.malware.lu/
https://virusshare.com/
https://remnux.org/
https://ssdeep-project.github.io/ssdeep/index.html
https://cyberleninka.ru/article/n/nechyotkoe-heshirovanie-v-zadachah-informatsionnoy-bezopasnosti
https://cyberleninka.ru/article/n/nechyotkoe-heshirovanie-v-zadachah-informatsionnoy-bezopasnosti
https://doi.org/10.51408/1963-0094
https://colab.research.google.com/
https://github.com/T-JN?tab=repositories

