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Abstract—The significance of earth observation data spans
diverse fields and domains, driving the need for their efficient
management. Nevertheless, the exponential increase in data
volume brings with it new challenges that make processing
and storing data more complicated. In response to these
challenges, this article proposes an optimized multi-modular
service for earth observation data management. The suggested
approach focuses on choosing the optimal configurations for
the storage and processing layers to improve the performance
and cost-effectiveness of managing data. By employing the
recommended optimized strategies, earth observation data can
be managed more effectively, resulting in fast data processing
and reduced costs.

Keywords— Earth observation, distributed computing, perfor-
mance optimization.

I. INTRODUCTION

Earth observation (EO) data acquired from satellites plays
a key role in various domains, including environmental moni-
toring [1], land cover analysis [2], water resource management
[3], and global climate change studies [4]. Despite the broad
utilization of EO data, the storing, management, and data
processing pose significant challenges owing to its continu-
ous expansion caused by daily observations from numerous
satellites. To tackle the challenges posed by EO data, a range
of technologies have been developed and implemented with
the primary goal of simplifying their management. To address
the complexity of storing EO data, innovative formats like
Cloud Optimized GeoTIFF (COG) [5] have been proposed.
This format offers significant advantages such as optimized
storage in cloud environments, enabling faster access, efficient
retrieval, and seamless processing of vast amounts of EO data.
The format’s primary advantages can be summarized in two
key aspects. First, COG utilizes a tiled structure that covers
square areas of the primary raster image, enabling clients to
request specific data sections through HTTP range requests.
Second, the format supports data compression techniques,

optimizing data transfer over the internet and reducing storage
utilization for more efficient handling of EO data. To overcome
the challenges posed by the extensive processing of large-
scale EO data, the EO community effectively employs high-
performance computing (HPC) techniques. A popular choice
by the EO community among these techniques is the utilization
of the Dask framework [6]. The solution enables the con-
current processing of EO data by distributing the workload
across multiple computational nodes, resulting in efficient and
expedited data processing.

To manage EO data optimally and efficiently, it is crucial
to address both storage and processing aspects.

In the data storing layer, adopting innovative solutions
like COG is essential to ensure efficient EO data storage.
However, it’s important to note that the COG format supports
various data compression methods, each of which can impact
both storage savings and processing speed differently. A high
compression factor can significantly reduce the data size, but
it may require more time to decompress the data during
processing. On the other hand, a weak compression factor may
not reduce the data size and therefore the network transfer time
much, thus saving less storage space, but it may result in faster
processing times [7]. Finding the optimal compression method
becomes a challenging task, as striking the right balance
between storage savings and processing speed is essential.
It requires careful consideration and testing to determine the
compression method that best suits the specific requirements
of handling EO data adeptly and efficiently. Storing EO data in
data repositories with the most suitable compression method
will result in storage savings, reduced network transfer time,
and faster processing.

To ensure efficient performance in EO data processing using
distributed computing, several vital factors must be taken into
account. These factors encompass the cluster’s configuration,
determining the number of worker nodes, as well as their
specific characteristics such as the number of CPUs and
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RAM size. Additionally, various objectives become critical for
clients. Those lacking their own computational cloud infras-
tructure must rely on resources from global cloud providers,
which come with associated costs based on the chosen options.
Thus, when aiming to select an optimal cluster configuration,
it becomes essential to strike a balance between multiple ob-
jectives. This entails finding the best trade-off between various
factors to achieve efficient processing while considering cost,
performance, and other relevant considerations. Besides this,
another challenge is setting up the cluster itself, which is in
addition to the effort of selecting the cluster design that is most
appropriate in terms of computing complexity. As a result,
a rapid and automated cloud-based provisioning and scaling
solution for high-performance computing (HPC) is required.

Efficient management of EO data requires a thorough eval-
uation of both storage and processing layers. It is essential
to make informed decisions regarding data compression and
cluster configuration setup for storage and processing layers.
The article presents numerous separate optimization research
works and results that have recently been implemented and
studied as parts of a multi-modular service, the goal of which
is to provide optimization methods for efficiently handling EO
data.

II. MULTI-MODULAR SERVICE

The architecture of the suggested multi-module service is
shown in Figure 1.

Fig. 1. Architecture of the multi-modular service

The multi-modular service consists of several modules,
including Manager, Data repositories, Scalable processing, and
Decision-making with the Estimator submodule. A client can
access optimization methods for EO data provided by the
service through the REST API.

A. Manager

The Manager module is responsible for handling the client’s
requests. The clients can make multiple requests to the Man-
ager for various tasks, including:

• Recommending a data compression method for storing
data in the repository,

• Estimating the execution time or the price of the compu-
tational resources required for a specific task,

• Optimization of the choice of cluster configuration, taking
into account single or multiple objectives like perfor-
mance and cost,

• Providing the possible optimal data processing while
accounting for the mentioned optimization methods.

The Manager module is the central element that handles the
service’s overall functionality. Through information sharing,
it works with other modules to manage and complete client
requests. It cooperates with the Decision-making module to
obtain the optimal configurations, works with the Data repos-
itory module to retrieve metadata about the needed data for
processing, and interacts with the Scalable Computing module
to process the data using the specified cluster configuration.

B. Data repositories

The EO data is stored in the Data repositories module,
which also provides an API for retrieving the data. The
repositories also offer another API that is intended just to
deliver metadata rather than actual data. This metadata is
lightweight compared with the actual data and contains es-
sential details about the chosen region, such as the shapes of
the satellite image. It is possible to determine the precise size
of the processable data for the client’s request by using the
metadata. This method enables effective data handling without
requiring the transmission of the complete dataset, conserving
bandwidth and computing power. The service can calculate
the data size and properly handle the client’s requests with
the help of the metadata.

The service is intended to handle repositories that provide
either the SpatioTemporal Asset Catalog (STAC) API [8] or the
Web Coverage Service (WCS) [9]. The Armenian Datacube
[10], which stores EO data collected by several satellites over
the area of Armenia, is now compatible with the service. The
software can also communicate with other global EO data
sources that offer the aforementioned kinds of APIs. Using
configuration files, it is possible to configure the repositories.
These files keep track of important data including the API’s
base URL and type (WCS or STAC). These settings allow
the service to easily connect and communicate with numerous
data sources, facilitating the quick retrieval and processing of
EO data in response to varied customer demands.

C. Scalable processing

The EO data processing responsibilities are handled by the
Scalable processing module. It uses client-requested choices
such as region of interest, time, and particular bands required
for the processing function to collect the necessary EO data
from data sources. When it receives the required information,
the module creates a Dask cluster. The Manager supplies the
necessary parameters for building this cluster, including data
from the Decision-making module on the ideal number of
nodes and each node’s computing characteristics. The specified
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Dask cluster is then used by the Scalable processing module
to process the data. This module guarantees quick, automated
provisioning and scaling of cloud resources, enabling effective
management of computing resources by processing demands.
Recent implementation [11] provides automatic scalability
and fast resource provisioning by using the Dask distributed
package with the remote management tools deployed on a
Kubernetes cluster. With this configuration, the service can
effectively manage resources and scale flexibly in response
to workload. A pod in the Kubernetes cluster corresponds
to one worker node in the Dask cluster. According to the
setup of the service, each pod is given access to particular
processing resources, such as CPU and RAM. This matching
of worker nodes to pods guarantees that processing activi-
ties may be divided and carried out concurrently across the
available resources, making effective and parallel use of the
computing capacity of the Kubernetes cluster. The service can
adjust to changing workloads and processing needs by utilizing
Dask automatic scaling and resource allocation features. The
service may automatically spawn more pods with the right
resources to tackle the workload as the quantity or complexity
of processing jobs grows using the recommendation of the
Decision-making module. This scaling strategy guarantees that
the service can effectively analyze EO data while maximizing
the usage of the computational resources capabilities of the
underlying Kubernetes cluster and enables the service to
handle large-scale EO data processing tasks effectively while
optimizing the computational resources for faster and more
responsive data processing.

D. Decision-making

The Decision-making module provides improved methods
for managing EO data for both storage and processing layers.
By carefully choosing the best setup, this optimization is
achieved. The Estimator submodule, which includes a simula-
tor and trained regression models constructed on historical ex-
perimental datasets, works with the Decision-making module
to produce these most suitable configuration suggestions. The
module offers two different sorts of recommendations: first,
it specifies the optimal data compression technique to save
EO data effectively for later performance-efficient distributed
processing, and second, it aids in choosing the appropriate
cluster for optimal distributed processing.

The results of a recent study [12] determine which data
compression technique is optimal. The suggested method
entails estimating the execution time of data processing while
accounting for various data compression techniques and dis-
tributed computing clusters with different numbers of nodes
and resources. Regression models using training data are used
to make these predictions. The Decision-making module then
suggests the optimal data compression technique for effective
data storage based on the prediction results. EO data can be
compressed using a variety of compression methods, each
of which gives a unique compression ratio. As a result,
the decompression duration differs between these various
methods. The evaluation of the study focuses on determining

how well-distributed computing environments handle data.
This assessment especially takes into account the supported
EO data compression techniques on various clusters, each
of which has a distinct number of nodes. This examination
compares the effects of the Dask and Spark environments
on the speed of data processing. Study shows [13] that Dask
and Spark both offer comparable data processing performance.
However, combining the Dask environment with the Zstandard
compression technique yields the best performance results.
In comparison to all other potential lossless compression
techniques, this combination produces the most beneficial
compression factor. It considerably reduces execution times by
around 4.72 times in Dask and 3.99 times in Spark compared
to default techniques. This result demonstrates the value of
combining the Zstandard compression technique with the Dask
environment to produce higher data processing performance.

It is crucial to evaluate the task’s execution time across
a range of potential cluster configurations to choose the
optimal cluster for attaining performance-efficient distributed
computing of EO data. The trained regression models and
a simulator included in the Estimator submodule aid in this
evaluation procedure. A simulator that is particularly made
for EO data processing processes has been suggested in a
recent study [14]. This simulator is based on the CloudSim
simulator and is utilized to estimate the execution time of EO
data processing tasks. The size of the input data, which relies
on the period, region, and bands, as well as the complexity
of the designated function, are two criteria that are taken
into consideration throughout the estimating process. The
simulator also takes into account the client-described cloud
infrastructure. The evaluation results demonstrate the high
accuracy of the simulator in comparison to actual experi-
ments. It is worth mentioning that the simulator obtains an
R2 value of 0.88 and an RMSE (Root Mean Square Error)
of 78 while forecasting the weekly Normalized Difference
Vegetation Index (NDVI) for the Armenian area. Besides
evaluating the execution time, the simulator can be used
to determine the cost of calculation as well. The simulator
considers this while running simulations because global cloud
providers charge for their resources. Thus, the simulator turns
into a useful tool and may be used to assess the execution
time for a certain job and determine the computation cost
for different kinds of clusters. Users can investigate various
cluster configurations through these experiments and assess
the performance and financial effects they have. The optimal
cluster configuration for the particular task can be found by
examining the data produced from the simulator and finding
the best trade-off balance between performance efficiency and
cost-effectiveness. This gives decision-makers the ability to
make well-informed decisions when choosing the best cluster
configuration to meet their unique processing needs while
successfully controlling related expenses.

The proposed simulator and trained regression models offer
methods to assess the execution time and computation cost of
a task for a limited set of potential Dask clusters, which can
be deployed within the client’s described cloud infrastructure.
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To tackle the challenge of selecting the most suitable cluster
configuration, the study [15] suggests a multi-objective opti-
mization method for optimal EO data processing, which takes
both performance and cost objectives into consideration. The
solution involves generating a set of possible configurations
for the distributed data processing framework, which serves
as a Pareto frontier. By employing this approach, the optimal
cluster configuration that aligns with their specific needs and
constraints can be used, ensuring an efficient balance between
data processing performance and computation cost for EO data
processing tasks. The evaluation of the experiments shows that
the performance can rise by as much as 1.66 times while costs
can decrease by a factor of 2.38 in some scenarios using the
suggested method.

III. CONCLUSSION

The paper proposed a multi-modular service for enhancing
earth observation data processing that combines numerous
separate optimization research investigations and studies. This
service’s major goal is to provide the optimal configuration
selection for efficiently handling EO data at both the storage
and processing layers. The goal is achieved by enabling well-
informed choices for cluster architectures and data compres-
sion algorithms. Further activities: it is planned to increase the
estimating module’s accuracy while lowering error rates in the
optimization module, implement OLAP-based services, and
several data processing functions to help the earth observation
community properly monitor the environment.
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