CSIT Conference 2023, Y erevan, Armenia, September 25 - 30

Optimizing Build Time of Shoc Workloads

Davit Petrosyan
Institute for Informatics and Automation
Problems of NAS RA
Yerevan, Armenia
e-mail: davit.petrosyan@iiap.sci.am

Abstract—Running HPC workloads can be challenging due to
infrastructure complexity, the learning curve and the specifics
of various workload management and scheduling solutions. The
paper aims to describe the recent advancements in the Shoc [1]
architecture designed for submitting serverless HPC workloads
on cloud infrastructure. In particular, the paper discusses the set
of architectural advancements in the performance of the build
process.

Keywords—HPC, containerization, cloud, Kubernetes.

I. INTRODUCTION

The increasing demand for high-performance computing
(HPC) workloads in cloud environments has presented oppor-
tunities and challenges in recent years. While cloud computing
offers scalable and flexible resources for executing compute-
intensive tasks, the complexity of managing cloud infrastruc-
tures and orchestrating diverse HPC workloads remains a
significant hurdle.

As discussed in an early work [1], the proposed architecture
models a serverless approach to submitting high-performance
workloads to cloud environments. The main aim of the design
is to reduce the complexity of working with cloud environ-
ments so that the end user running a cloud job is aware of the
algorithm. In contrast, the complexity of infrastructure setup,
job scheduling, and resource management is something the
Shoc infrastructure should take care of.

The diversity of technologies, runtimes, and libraries em-
ployed in creating HPC jobs for various use cases further
compounds the challenges of deploying tasks in the same
cloud environment. To surmount this obstacle, our architecture
leverages container technologies for workload encapsulation
and employs container orchestration technologies to manage
workloads and resources in the cloud infrastructure effectively.

The article presents an overview of the pipeline employed
by our proposed architecture to facilitate the seamless execu-
tion of HPC workloads in the cloud. The critical steps in the
pipeline are as follows:

o The process begins by preparing the source code of the
HPC task, which is possible to implement in various
programming languages such as C/C++, MPI [2], Python,
and others;

o We containerize the source code by building a Singularity
[3] or Docker [4] image for the solution to encapsulate
the HPC solution effectively. Containerization ensures the

https://doi.org/10.51408/csit2023_20

Harutyun Mkrtchyan
Yerevan State University
Yerevan, Armenia
e-mail: harutyun.mkrtchyan2 @edu.ysu.am

99

Hrachya Astsatryan
Institute for Informatics and Automation
Problems of NAS RA
Yerevan, Armenia
e-mail: hrach@sci.am

consistency of the execution environment, irrespective of
the underlying infrastructure;

The containerized solution’s image is then utilized to
create a workload that is submitted to the container
orchestration system, such as Kubernetes [5]. The orches-
tration system efficiently manages the deployment and
scaling of containers across the cloud infrastructure;
The orchestration system ensures that all the prerequisites
for the HPC job, including CPU, memory, and other
conditions, are met before initiating the execution of the
workload;

Upon successful execution, the results of the HPC job are
collected, completing the pipeline.

II. ARCHITECTURE OVERVIEW

The Shoc architecture comprises several integral compo-
nents that work synergistically to facilitate seamless deploy-
ment and execution of HPC workloads in cloud environments.
Each part plays a distinct role in achieving the architecture’s
overarching goal of simplifying cloud-based HPC for end
users. The key components are as follows:

The shoccli is the user interface, enabling users to in-
teract with the Shoc infrastructure effortlessly. Through a
straightforward command-line interface, users can submit
their HPC tasks, manage workloads, and monitor job
execution, abstracting the complexities of the underlying
infrastructure;

The back-end (builder) service is responsible for con-
tainerizing the HPC workload. By encapsulating the
solution’s source code into container images, this service
ensures a consistent and reproducible execution environ-
ment, irrespective of the cloud infrastructure’s specifics;
The architecture utilizes a container engine (such as
docker-in-docker), which efficiently manages the execu-
tion and resource allocation for individual containers;
Shoc incorporates a built-in image registry to store the
container images created by the builder service. This
centralized repository facilitates the retrieval and sharing
of pre-built images, streamlining the execution of subse-
quent tasks;

The executor service takes charge of executing the work-
loads prepared by the builder. It is responsible for sub-
mitting jobs to the cloud environment, managing task
execution, and monitoring job progress;



e As a middleware between the front-end (shoccli) and the
back-end services, the reverse proxy enables seamless
communication and data transfer between the user inter-
face and the underlying components.

The infrastructure also provides a framework for adding
handlers for various workloads. The current architecture al-
ready covers several use cases:

A. Single-Node Workloads

The Shoc infrastructure offers a seamless and straight-
forward approach to running serverless HPC workloads for
algorithms written in various supported languages, including
Python, Node.js, .NET, Java, C/C++, and more. End users can
now submit their source code, and the Shoc back-end takes
care of the rest.

Upon receiving the source code, the Shoc back-end employs
a specialized handler tailored to the corresponding technology
to build a comprehensive workload image. This image includes
all the necessary files, dependencies, libraries, and input
sources essential for the workload’s successful execution. The
back end generates a recipe specific to the workload type. It
utilizes a hosted container engine to create an OCI-compatible
image, which is then stored in the built-in or external image
registry.

Once the image is successfully built, the next step involves
deploying the newly created image to the underlying orches-
tration infrastructure. The Shoc system’s executor module
handles this task using another specialized handler designed
to deploy the job effectively. For instance, if the Shoc system
has one or more Kubernetes clusters registered, the handler
will select an appropriate cluster, generate a native Kubernetes
Batch Job object, and submit it to the cluster for execution.
Subsequently, the system attaches a listener to specific pods or
containers associated with the job, ensuring seamless output
collection and its prompt return to the end user.

As a result, end users can now submit their algorithms
written in their preferred language to the Shoc infrastructure
with a single command and swiftly obtain the desired results.
The Shoc infrastructure and the underlying orchestration tech-
nology, such as Kubernetes or Mesos [6], expertly manage all
the intricacies of scheduling and resource management.

B. Multi-Node Workloads

While existing cloud-native technologies like AWS Lambda
and Azure Function facilitate the execution of single-node
serverless jobs, they do not support the submission of multi-
node workloads, such as those relying on MPI-based algo-
rithms or Spark jobs [7].

Shoc infrastructure offers a powerful solution that trans-
forms these complex multi-node jobs to address this limi-
tation, enabling them to run over virtualized clusters. With
this approach, Shoc provides a built-in capability to submit
HPC workloads with specific resource requirements, while
maintaining transparency for the end user.

Shoc achieves this by creating a set of prerequisite objects
in the underlying orchestration system, effectively establishing

a virtual cluster to accommodate the multi-node workload.
For instance, a Kubernetes cluster registered within the Shoc
system will create a prerequisite StatefulSet with defined
resource requirements such as CPU, RAM, GPU, and more.
Once the StatefulSet is successfully deployed to the cluster,
the main job can utilize pods as a set of virtual cluster nodes,
effectively executing the multi-node workload.

By seamlessly abstracting the complexities of virtual cluster
setup and resource allocation, Shoc empowers users to effort-
lessly submit multi-node HPC workloads without requiring
intricate manual configurations. Researchers and developers
can now focus entirely on their algorithm’s design and func-
tionality, secure in the knowledge that Shoc’s intelligent or-
chestration will handle the efficient execution of their multi-
node tasks.

This innovative capability extends the possibilities of cloud-
based HPC, facilitating the deployment of sophisticated algo-
rithms and data-intensive processing, and opens new avenues
for scientific exploration and discovery. The Shoc infrastruc-
ture’s adaptability and versatility make it a valuable tool for
researchers across diverse domains, propelling advancements
in cloud-based HPC.

III. PROBLEM STATEMENT

As per Shoc’s design, the end user should have only a small
Shoc CLI tool installed on its environment, and the rest of the
pipeline, from compiling the solution to the execution, is the
primary concern of the Shoc back-end. The drawback of such
a degree of flexibility is that the source code and any other
assets (such as input files, etc.), should be sent to the server
before every execution. Moreover, once the server gets the
new set of source and data files, it needs to build a container
image that will have installed all the necessary libraries, tools,
compilers, etc.

This paper aims to minimize the need for solution rebuilds
when not required. For example, if the end user wants to rerun
the same solution with the same or other run-time parameters,
the existing image could be reused. On the other hand, if any
modifications in the solution don’t affect the final executable
solution, the existing image will be reused.

IV. SOLUTION

A possible way to address the mentioned problem is to keep
track of the modifications on the system at multiple stages.

Assuming the user wants to submit the solution directory D
that contains source files sy, sa, ..., S, and data files d;, do,
..., dp. Depending on its underlying technology, every type
of workload will require a different subset of the solution
files. For example, if the solution is given with binary files
and does not need the build process to be involved, the files
containing source code are not required for the build process.
And the opposite, if the solution type requires only source
code to be available, the compiled binaries, libraries, and other
dependencies are unnecessary, as the build pipeline will take
care of those on the back-end side.

100



For example, while building a Python package, sending
the solution’s dependencies to the server is unnecessary, as
the pipeline can download the dependencies with only the
requirements.txt file.

A. Ignoring unnecessary files

One advancement towards the mentioned optimization is
ignoring the files that do not affect the build pipeline. To
achieve that, Shoc allows the end users to create a special
.shocignore file and list specific rules for ignoring unnecessary
files.

Every rule in the file is a text line representing one of the
following:

« the path of the file or a directory,
« the pattern of file or a directory.

By this, while the CLI tool creates a bundle for sending
to the server, it will not include files or directories matching
any rule in the .shocignore file. Hence, the time to archive
the bundle, network traffic, and overall transfer speed will be
significantly reduced. It’s pretty common to exclude directories
such as .git, node_modules, target, bin, obj, etc. as they don’t
affect the build process while having a large size.

B. Hashing bundle listing

We could reduce the bundle size and speed up the upload
process by ignoring unnecessary files. The upload still hap-
pens, so the build process is triggered even if no file was
modified.

There are several approaches to address the issue, however,
it is preferable that the optimization be transparent to the end
user. Therefore, the next optimization was applied to the Shoc
pipeline to prevent bundle upload if there is no need.

To make sure the optimization is valid we make the follow-
ing assumptions:

« if input files are not modified since the last build, the

resulting image should be the same,

o the result of the build process does not depend on

anything other than input files,

« in case of any non-reproducible build stages, the rebuild

process should be forced.

Based on the mentioned assumptions the CLI application
working on the end user’s side will make a pre-flight check
as follows:

o list all the files required for the bundle (according to
.shocignore file),
o build a special temporary file containing the list of the
source files along with their modification timestamps,
o computes the hash of the listing file and uses it as a
lookup key,
e in case there is a known bundle with the given listing
hash, assume the image is already built.
This way, the system will not upload the bundle to the server
if it could find an image built with the same set of files.
Obviously, the method has some downsides as the times-
tamp change does not always reflect the change in the content.

C. Hashing the bundle

Applying the mentioned optimizations, the system reduces
the need to send bundles over and over again, if there is
no need. However, in some instances, there is a chance that
some of the files will have a modified timestamp, however,
the content will remain the same.

To address the problem, the system will apply the next level
of pre-flight check. This time, the system will allow bundling
to be generated on the end user’s machine and after the bundle
file is created, the system will calculate the hash of the overall
bundle again.

The generated hash code will be used as a lookup key for the
bundle in the system. So, if there is an image in the system
having the same bundle hash, the system will not send the
bundle to the server assuming that the resulting image already
exists and does not need to be updated.

In this way, the system will optimize both upload and build
time (compilation, container image creation, etc.).

D. Container image caching

A combination of all the above optimizations will guarantee
that replaying the same workload with the same or another
set of execution parameters will not trigger the whole build
pipeline, which can take a long time to complete due to the
following reasons:

« the bundle is archived on the end user’s machine,

« the bundle is uploaded to the server,

« the bundle is used to build a container image,

« image build process can take a long time to load its parent
image and install dependencies.

To reduce the time of loading potentially large parent images
in the pipeline build stage, the system will utilize the filesystem
layering approach used by modern container runtimes such as
Docker and Singularity.

To enable layering behaviour, a special service in the Shoc
ecosystem called dind (docker-in-docker) will have permanent
storage attached to it, so that, if the parent image of the
specified version was loaded once, it will be automatically
mounted on the next usage.

V. CONCLUSION

Adding a variety of use cases to the Shoc infrastructure
increases its overall architectural complexity, leading to sub-
optimal performance in different scenarios.

The article presents recent advancements and optimizations
made to the Shoc system allowing to significantly improve
the speed of build process in the pipeline. The proposed
methodology uses several layers of heuristics as well as
uses built-in optimizations of the referenced technologies to
increase the performance of the build process and increase
overall convenience for the end user.

The further implementation will rely on the mentioned
techniques as well as expand area of performance and stability
improvements.

101



ACKNOWLEDGMENT

This work is partially supported by the EC Horizon2020
NI4OS-Europe (National Initiatives for Open Science in Eu-
rope) project (Nr. 857645) and the “Self-organized Swarm
of UAVs Smart Cloud Platform Equipped with Multi-agent
Algorithms and Systems” project (Nr. 21AG-1B052) supported
by the Armenian State Committee of Science.

REFERENCES

[1] D. Petrosyan and H. Astsatryan, “Serverless high-performance computing
over cloud,” Cybernetics and Information Technologies, vol. 22, no. 3, pp.
82-92, 2022. [Online]. Available: https://doi.org/10.2478/cait-2022-0029

[2] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Computing, vol. 22, no. 6, pp. 789-828, Sep. 1996. [Online].
Available: https://doi.org/10.1016/0167-8191(96)00024-5

[3] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLOS ONE, vol. 12, no. 5,
p. €0177459, May 2017. [Online]. Available: https://doi.org/10.1371/
journal.pone.0177459

[4] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[5] D. Bernstein, “Containers and cloud: From Ixc to docker to kubernetes,”
1IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

[6] M. Frampton, “Apache mesos,” in Complete Guide to Open Source
Big Data Stack. Apress, 2018, pp. 97-137. [Online]. Available:
https://doi.org/10.1007/978-1-4842-2149-5_4

[7] I.Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,
V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter, “Serverless
computing: Current trends and open problems,” 2017.

102



