
A Computational Approach for Evaluating
Steady-State Probabilities of a Multiprocessor

Queueing System with a Waiting Time Restriction
Vladimir Sahakyan

Institute for Informatics and Automation Problems of
NAS RA

Yerevan, Armenia
email: vladimir.sahakyan@sci.am

Artur Vardanyan
Institute for Informatics and Automation Problems of

NAS RA
Yerevan, Armenia

email: artur.vardanyan@iiap.sci.am

Abstract—Distributed and parallel high-speed computing sys-
tems have become increasingly important in recent years for
handling large amounts of data and performing complex scientific
research using multi-agent intelligent methods. Accurate model-
ing tasks in science and technology require fast and large-scale
computations. However, organizing computations in a cluster
environment to optimally utilize system resources is a challenge
that requires effective scheduling of task execution, which takes
into account the required resources and execution time.

In this context, this paper proposes a computational approach
for evaluating steady-state probabilities in the environment
of a multiprocessor queueing system. The proposed approach
contributes to a practical partial solution to the challenges of
organizing computations in a cluster environment and can be
applied of the organizing process in modeling tasks that require
fast and large-scale computations for accurate results to the
optimal utilization of resources.

Overall, the paper contributes to the growing field of dis-
tributed and parallel computing by providing a practical ap-
proach to evaluating steady-state probabilities in a multiprocessor
queueing system.

Keywords— Queueing Theory, Multiprocessor System, Multi-
processor Queueing System, Waiting Time Restriction.

I. INTRODUCTION

For a more detailed formulation, consider a computing sys-
tem consisting of m (m ≥ 1) computing processors (or cores).
It is assumed that the number of tasks that can be queued is
limited by a certain number of waiting slots: n (n ≥ 1)[1].
The reason for denying the service can be the impossibility of
placing a task in the queue and the impossibility of serving
with user-defined constraints(time, number of processors, etc.).
Each task in the system is characterized by four random
parameters (ν, β, ω, γ), where ν is the number of computing
resources (processors, cores, cluster nodes, etc.,) needed by
the task for servicing, β is the maximum time required to
service a task, ω is the possible time a task can wait before
being serviced, after which it leaves the system without being
serviced, and γ is the time interval after which the task is
allowed to start servicing the system from the moment the task
enters the system. When γ = 0, the value of this parameter can
be omitted, and in systems without a waiting time restriction,
the value of the parameter ω is also omitted[2]. For tasks with

a waiting time restriction, when they enter the system, the
possibility of execution is checked. Then the task is either
accepted after being placed in the service queue or it is denied
service. The time required for the service of the task is partly
conditional, that is, it is the maximum allowable value. In
reality, it is random and may be less than the given one.
Therefore, the order of services can be changed at the moment
of receipt of tasks and completion of services.

Tasks receive a service denial if, at the time of entering the
system, it turns out that it cannot be serviced according to the
specified parameters (for example, start service at the specified
time).

The system is observed when a task is placed in a queue or
a service is completed. By considering all possible scenarios
of the system operation, when the system goes into a state
where i (1 ≤ i ≤ m) tasks are being serviced, and j (1 ≤
j ≤ n) tasks are waiting in the queue, a system of equations
was obtained(due to finite numbers n and m, the number of
possible states of the system is finite). This paper aims to
analyze the solution to the aforementioned system of equations
and evaluate steady-state probabilities.

II. SYSTEM PARAMETERS

The system parameters are described as follows:
α - a random value of the time interval between neighboring
entrances, which has the probability distribution:

P (α < t) = A(t),

β - a random value of the task execution time, which has the
probability distribution:

P (β < t) = B(t),

ω - a random value of the permissible waiting time for a task
in the queue, which has the probability distribution:

P (ω < t) = W (t),

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

106

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

https://doi.org/10.51408/csit2023_22



ν - a random value of the number of required computational
resources for performing a task, which has the probability
distribution:

P (ν ≤ k) = V (t), k = 1, 2, ...,m.

Tasks will be serviced in the order they enter the system,
i.e., FIFO discipline is used[3]. Those tasks that the system
receives when the queue is fully occupied (that is, there are
already n tasks in the queue waiting to be serviced), receive
system access and service denial.

III. BASIC NOTATIONS

To describe the transition of a system from one possible
state to another, the following notation is introduced:
Li,j - the state of the system when i tasks are serviced and j
tasks are waiting in the queue,
Pi,j - the probability that the system is in the Li,j state:

Pi,j = P (Li,j).

Below is a schematic representation of the cases when the
system can pass from another state to state Li,j :

Li,j−1

Li−k+1,j+k Li,j Li−k,j+k+1

Li,j+1

1

2

3

4

The transitions shown in the diagram are described as follows:
1) The initial state of the system was Li,j−1, and a new task

arrived and joined the queue,
2) The previous state of the system was Li−k+1,j+k, where

k = 1, 2, ...,min(i, n − j). A task completed its service
and left the system, and the first k tasks from the queue
were accepted for service.

3) The previous state of the system was Li−k,j+k+1, where
k = 0, 1, ...,min(i − 1, n − j − 1). The first task in the
queue left the queue (its waiting time ran out), and the
first k tasks from the queue were accepted for service.

4) The previous state of the system was Li,j+1, and a task
from the queue (not the first task) left the queue (its
waiting time ran out).

Due to the finite number of possible states of the system,
the system goes into a stable mode of operation, i.e., steady
state[4].

IV. LIMITATIONS AND EQUATIONS

In order to derive the probabilistic equations for the afore-
mentioned system, the following distribution functions: A(t),
B(t), W (t), and V (k) are incorporated:

A(t) = 1− e−at,

B(t) = 1− e−bt,

W (t) = 1− e−wt,

V (k) =
k

m
, k = 1, 2, ...,m :

where a is the intensity of the incoming stream, b is the
intensity of service and w is the intensity of the failure of
service for a task from the queue.

As the number of cases described in the previously pre-
sented scheme may vary depending on the values of the
variables i, j, and k, it is important to initially focus on the
cases determined by the borderline values of these variables.
To capture these scenarios, we introduce the notations δ

(1)
i ,

δ
(2)
i,j,k, and δ

(3)
i,j,k. Subsequently, these probabilities will be

described after constructing the probabilistic equations.
Obviously, when i = 0 and j = 0, then

P0,0 =
b

a
P1,0, (1)

and when i = 0 and 1 ≤ j ≤ n, then

P0,j = 0. (2)

In the case when 1 ≤ i ≤ m and j = 0, then

Pi,0 =
1

a+ ib

[
aδ

(1)
i−1Pi−1,0+

+ b

k1∑
k=k0

(
(i− k + 1)δ

(2)
i,0,kPi−k+1,k

)
+

+ w

k2∑
k=0

(
δ
(3)
i,0,kPi−k,k+1

)]
,

(3)

where

k0 =

{
0, if 1 ≤ i < m

1, if i = m
,

k1 = min(i, n),

k2 = min(i− 1, n− 1).

Note that in this case, the equations determining Pi,0 include
only the case when the queue leaves the first task in the queue.

The scenario where 1 ≤ i ≤ m and 1 ≤ j < n is now
examined.

Pi,j =
1

a+ ib+ jw

[
a(1− δ

(1)
i−1)Pi,j−1+

+ b

k1∑
k=k0

(
(i− k + 1)δ

(2)
i,j,kPi−k+1,k+j

)
+

+ w

k2∑
k=0

(
δ
(3)
i,j,kPi−k,k+j+1

)
+ wjPi,j+1

]
,

(4)

where k0 is determined as in the previous case, and

k1 = min(i, n− j),

k2 = min(i− 1, n− j − 1).

107



Note that in this scenario, the penultimate term of the equa-
tions determining Pi,j accounts for the situation where the first
task lefts the queue, while the final term considers the scenario
where a non-first task left the queue. It remains to consider
the last two borderline cases: the first, when 1 ≤ i < m and
j = n, then

Pi,n =
1

a+ ib+ nw

(
a(1− δ

(1)
i−1)Pi,n−1+

+ b(i+ 1)δ
(2)
i,n,0Pi+1,n

)
,

(5)

and the last, when i = m and j = n, then

Pm,n =
a(1− δ

(1)
m−1)Pm,n−1

a+mb+ nw
: (6)

Before to describe δ
(1)
i , δ

(2)
i,j,k and δ

(3)
i,j,k probabilities, some

events are defined:

Definition 1. Let Ai be the event that

i∑
l=1

νl ≤ m.

Definition 2. Let Bi be the event that

i∑
l=1

νl < m.

Definition 3. Let Ci,j,k be the event that if j = 0

i−k∑
l=1

νl +

i+1∑
l=i−k+2

νl ≤ m,

and if 1 ≤ j ≤ n

i−k∑
l=1

νl +

i+1∑
l=i−k+2

νl ≤ m <

i−k∑
l=1

νl +

i+2∑
l=i−k+2

νl.

Definition 4. Let Di,k be the event that

i−k+1∑
l=1

νl ≤ m <

i−k+2∑
l=1

νl.

Definition 5. Let Ei,k be the event that

i−k∑
l=1

νl ≤ m <

i−k+1∑
l=1

νl.

After establishing the definitions, let us proceed to the
description of δ(1)i , δ(2)i,j,k, and δ

(3)
i,j,k.

The probability δ
(1)
i will be determined as follows:

δ
(1)
i =


1, if i = 0

P
(
Ai+1

/
Bi

)
, if 1 ≤ i < m

0, if i = m

, (7)

here P
(
Ai+1

/
Bi

)
represents the conditional probability of

event A given that the event Bi has occurred.
The probability δ

(2)
i,j,k will be determined as follows:

δ
(2)
i,j,k =


1, if k = 0

P
(
Ci,j,k

/
Di,k

)
, if k ≤ i− 1

0, if k = i

, (8)

where 1 ≤ i < m and 1 ≤ j ≤ n, the conditional probability
P
(
Ci,j,k

/
Di,k

)
signifies the probability of the event Ci,j,k

given that the event Di,k has occurred.
And the probability δ

(3)
i,j,k will be determined as follows:

δ
32)
i,j,k =


1, if k = 0

P
(
Ci,j,k

/
Ei,k

)
, if k ≤ i− 1

0, if k = i

, (9)

here 1 ≤ i < m, 1 ≤ j ≤ n and P
(
Ci,j,k

/
Ei,k

)
represents

the conditional probability of event Ci,j,k given that the event
Ei,k has occurred.
Consequently, by solving the system of equations defined by
(1) to (6), the state probabilities of each Li,j (0 ≤ i ≤ m
and 0 ≤ j ≤ n) will be determined. That system of equations
is linear and solving it allows us to obtain the desired Pi,j

(0 ≤ i ≤ m and 0 ≤ j ≤ n) probabilities.
Theorem. The system of equations (1) to (6) with variables
Pi,j (0 ≤ i ≤ m, 0 ≤ j ≤ n) has a solution for the given
parameters. Furthermore, that solution satisfies the following
condition:

m∑
i=0

n∑
j=0

Pi,j = 1 : (10)

Obviously, the (10) condition follows from the fact that the
sum of the probabilities of all possible outcomes of the same
event is one.
The theorem provides a formal guarantee that the system of
equations has a solution that accurately determines the steady-
state probabilities for each state of the multiprocessor queueing
system. This result is significant in understanding and analyz-
ing the behavior of the system under various conditions and
parameters.

V. SUPPORTING PROBABILITY FORMULAS

This section delves into the derivation of supporting proba-
bilities and formulas that play a crucial role in calculating the
values of the probabilities determined from the formulas pre-
sented in equations (7), (8) and (9). This section will present
the derivations step-by-step, highlighting the key mathematical
principles and reasoning behind each result, shedding light on
their significance in the context of the computation process of
the steady-state probabilities in our multiprocessor queueing
system.

In the previous publications[1], [3], three lemmas were
derived and established that are instrumental to this current
analysis. These lemmas provide key insights and results that

108



will be utilized in this section to advance the derivation of
supporting probabilities. The three lemmas are as follows:

Lemma 1. The probability that i tasks occupy k processors
can be calculated as follows:

P

 i∑
j=1

νj = k

 =
1

mi

(
k − 1

i− 1

)
,

where 1 ≤ i ≤ k ≤ m.

Lemma 2. The probability that i tasks occupy no more than
k processors can be calculated as follows:

P

 i∑
j=1

νj ≤ k

 =
1

mi

(
k

i

)
,

where 1 ≤ i ≤ k ≤ m.

Lemma 3.

P

(
k∑

i=1

νi ≤ s <

k+1∑
i=1

νi

)
=

1

mk+1

(
m− s− k

k + 1

)(
s

k

)
,

where 1 ≤ k ≤ s ≤ m.

Let us now delve into the derivation of formulas for cal-
culating the values of the probabilities determined from the
formulas presented in equations (7), (8), and (9).
To begin, let us focus on the probabilities determined by the
formula (7). This formula captures the probabilities related to
a specific event or condition in the system.

Lemma 4. The probability value δ
(1)
i is determined as follows:

δ
(1)
i =


1, if i = 0
1

i+ 1
, if 1 ≤ i < m

0, if i = m

. (11)

Lemma 5. The probability value δ
(2)
i,j,k is determined as fol-

lows:

δ
(2)
i,j,k =


1, if k = 0

p1, if k ≤ i− 1 and j = 0

p2, if k ≤ i− 1 and 1 ≤ j ≤ n

0, if k = i

, (12)

where 1 ≤ i < m, and the quantities p1 and p2 are determined
by the formulas.

Lemma 6. The probability value δ
(3)
i,j,k is determined as fol-

lows:

δ
(3)
i,j,k =


1, if k = 0

q1, if k ≤ i− 1 and j = 0

q2, if k ≤ i− 1 and 1 ≤ j ≤ n

0, if k = i

, (13)

where 1 ≤ i < m, and the quantities q1 and q2 are determined
by the formulas .

VI. THE STEADY-STATE PROBABILITIES

This section will outline the process of solving the system
of equations derived earlier. First, we recall the system of
equations represented by equations (1) to (6). These equations
describe the probabilities of each state in the system, denoted
as Pi,j , where 0 ≤ i ≤ m and 0 ≤ j ≤ n. Our goal is to find
a solution that satisfies these equations for the given system
parameters.

The first step in solving the system of equations is to analyze
its structure and properties. It is observed that the system
of equations is linear, as the probabilities are expressed as
linear combinations of other probabilities. But it is important
to note that the system of equations represented by equations
(1) to (6) is homogeneous. By recognizing the homogeneity
of the system of equations, the solution can be approached by
changing one of the equations of the system with the condition
(10), as a result of which a non-homogeneous system of linear
equations will be obtained. This linearity allows us to employ
various mathematical techniques for solving linear systems.

Next, a common approach is employed by utilizing matrix
representation and matrix operations to solve the system of
equations. To facilitate this process, the A matrix is con-
structed, which represents the coefficients, and the b vector,
which represents the values of linear combinations of Pi,j

probabilities in the equations.
The A matrix is a square matrix of size (m+1)(n+1)×(m+

1)(n+ 1), where each element corresponds to the coefficient
of a particular Pi,j term in the equations. The b vector is a
column vector of size (m+1)(n+1)× 1, with each element
representing the value on the right-hand side of the equations.
By setting up the matrix equation

Ax = b,

where x is a column vector representing the unknown proba-
bilities Pi,j , various matrix operations can be applied to solve
x.

A numerical algorithm has been developed to solve the
system of equations, which has been implemented in the
Python programming language using various tools from the
NumPy library[6]. The algorithm provides an efficient and
accurate method for computing the steady-state probabilities
of the multiprocessor queueing system.

The detailed description and implementation of the algo-
rithm go beyond the scope of this paper and will be presented
in a separate article, which is intended for publication. The
separate article will provide a comprehensive explanation of
the algorithm’s steps, underlying mathematical techniques, and
code implementation.

By presenting the algorithm separately, we aim to provide a
more thorough and focused discussion on the technical aspects
of the solution methodology. It will also allow for a detailed
analysis of the algorithm’s performance, computational com-
plexity, and potential optimizations.

Further details regarding the algorithm’s development, im-
plementation, and performance evaluation will be provided in
the upcoming publication.

109



VII. CONCLUSION

In this paper, a computational approach is proposed for eval-
uating steady-state probabilities in a multiprocessor queueing
system with a waiting time restriction. The proposed approach
addresses the challenges of organizing computations in a
cluster environment and contributes to the optimal utilization
of system resources. By formulating the system as a set
of equations based on the number of tasks being serviced
and waiting in the queue, we could derive a finite set of
equations representing the system’s states. We, then, solved
these equations to obtain the steady-state probabilities for each
state of the system.

The practical implications of our approach are significant, as
it enables efficient scheduling of task execution in distributed
and parallel computing systems. The approach can be applied
to various modeling tasks, enabling accurate and efficient
utilization of resources.

Future research can focus on further optimization of the
computational approach, considering additional factors such as
dynamic task arrivals, varying task requirements, and resource
allocation strategies. Additionally, applying the approach to
real-world case studies and comparing it with the existing
methods would provide valuable insights into its effectiveness
and performance. Overall, our work lays the foundation for ad-
vancing the understanding and application of queueing theory
in multiprocessor systems with waiting time restrictions.

REFERENCES

[1] Vladimir Sahakyan, Artur Vardanyan, ”The Queue Distribution in Mul-
tiprocessor Systems with the Waiting Time Restriction”, Mathematical
Problems of Computer Science, Yerevan, vol. 51, pp. 82–89, 2019.
DOI: https://doi.org/10.51408/1963-0035

[2] Vladimir Sahakyan, Artur Vardanyan, ”About the possibility of execut-
ing tasks with a waiting time restriction in a multiprocessor system”,
AIP Conference Proceedings, vol. 2757, pp. 030003, 2023. DOI:
https://doi.org/10.1063/5.0135784

[3] Vladimir Sahakyan, Artur Vardanyan, ”The Queue State
for Multiprocessor System with Waiting Time Restriction”,
Computer Science and Information Technologies 2019,
Conference Proceeding, Yerevan, pp. 116–119, 2019. DOI:
https://doi.org/10.1109/CSITechnol.2019.8895093

[4] Bocharov P.P., D’Apice C., Pechinkin A.V., Salerno S., ”Queueing
Theory”, VSP, Utrecht, Boston, pp. 94-98, 2004. ISBN: 90-6764-398-X

[5] Vladimir Sahakyan, Artur Vardanyan, ”The Steady State Distribution
for M/M/m/n Model with the Waiting Time Restriction”, Mathematical
Problems of Computer Science, Yerevan, vol. 54, pp. 34–40, 2021.
DOI: https://doi.org/10.51408/1963-0057

[6] NumPy Contributors, NumPy Documentation, Available online at:
https://numpy.org/doc/stable/, Accessed on: July 26, 2023.

110


