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Abstract—This paper investigates the KK-MBF class of 
monotone Boolean functions coming from the finite set systems 
shadow minimization theory. Zeros of these functions 
correspond to the initial segments of the lexicographic order on 
the layers of binary cube. In particular, we focus on query-based 
recognition algorithms of KK-MBF functions, and consider the 
cardinality estimations of this class. 
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I. INTRODUCTION  
Many problems with monotone Boolean functions (MBFs) 
appear in logical and physical level design of systems, but also 
in artificial intelligence models, computation learning theory, 
hypergraph theory, and other areas. MBFs are used to encode 
extremely important constructions in various combinatorial 
optimizations: they provide a natural way to describe 
compatible subsets of sets of finite constraints. A number of 
applications (e.g., wireless sensor networks, dead-end tests of 
tables, data mining [1,2]) use optimization with MBF, where 
MBFs are represented by constructions such as chains and 
anti-chains [3] in hypercubes. Other similar applications with 
MBF can be added to this list [4,5,6]. 

There are a number of known effective tools and methods 
for analyzing MBFs, and new approaches are constantly being 
sought, investigated, and applied. Well-known open problems 
in this area includes the reconstruction problem of bounded 
classes of Boolean functions, with randomization of queries 
and functions, and the use of cube-splitting and chain-splitting 
technique of the Boolean domain [7,1]. 

A well-known problem concerning MBFs is the query-
based identification problem – the recognition of an unknown 
MBF of 𝑛 variables by using membership queries. Hansel’s 
algorithm [7], based on partitioning the binary cube into a 
special set of non-intersecting chains, provides optimal 
reconstruction in the sense of Shannon complexity. In 
practical algorithmic implementations, it is even not necessary 
to build and store all chains in computer memory [8,9,10]. 

In order to obtain solutions for bounded classes of MBFs, 
it is necessary to find a way to the structural properties of those 
classes. As we already mentioned, our research objective here 
is the well-known Kruskal-Katona theorem [14,15] and KK-

MBF functions, that describe the exact optimal monotone 
constructions of shadow minimisation (constraint 
minimisation) and existence of Sperner systems for the given 
set of parameters. In this way, KK-MBF class of MBFs 
becomes a special and attractive class for recognition. 

In this research, we investigate the KK-MBF class, 
focusing on query-based recognition algorithms, and 
addressing the cardinality issue of this class of MBFs. 

II. PRELIMINARIES 

A. Monotone Boolean function recognition 
Let 𝐵! = {(𝑥", ⋯ , 𝑥!)	|	𝑥# ∈ {0,1}, 𝑖 = 1,⋯ , 𝑛}  denote the 
set of vertices of the 𝑛-dimensional binary (unit) cube. Let 
𝛼 = (𝛼", ⋯ , 𝛼!) and 𝛽 = (𝛽", ⋯ , 𝛽!) be two vertices of 𝐵!. 
𝛼 precedes 𝛽 (by component-wise order), denoted as 𝛼 ≼ 𝛽  
if and only if 𝛼# ≤ 𝛽# for 1 ≤ 𝑖 ≤ 𝑛. 𝛼 and 𝛽 are comparable 
if 𝛼 ≼ 𝛽 or 𝛽 ≼ 𝛼, otherwise, they are incomparable. A set of 
incomparable vertices in 𝐵! is also called a Sperner family.  

We will also use the lexicographic order of vertices. 𝛼 
precedes lexicographically 𝛽 (𝛼 ≼$%& 𝛽) if either there exists 
an integer 𝑘, 1	 ≤ 	𝑘	 ≤ 	𝑛, such that 𝑎' < 𝑏'  and 𝑎# = 𝑏# for 
𝑖 < 𝑘, or 𝛼 = 𝛽.  

We define also partition/splitting of 𝐵! into two (𝑛 − 1)-
dimensional sub-cubes according to the values of the binary 
variables; for arbitrary 𝑥#: 

 
𝐵&!()
!*" = {(𝑥", ⋯ , 𝑥!) ∈ 𝐵!|𝑥# = 0}		and 

𝐵&!("
!*" = {(𝑥", ⋯ , 𝑥!) ∈ 𝐵!|𝑥# = 1}.  

 
Any subset ℳ ⊆ 𝐵! will be partitioned into 

  ℳ&!(" ⊆ 𝐵&!("
!*"  and ℳ&!() ⊆ 𝐸&!()

!*"  . 
 

𝐵!  can also be partitioned according to a set of variables. 
Partitioning according to 𝑥#" , ⋯ , 𝑥##  , we get 2'  number of 
(𝑛 − 𝑘)-dimensional sub-cubes, where in each of them the 
values of 𝑥#" , ⋯ , 𝑥##  are fixed in appropriate way; for 
example,  
 

𝐵&!"(",⋯,&!#("
!*' = A(𝑥", ⋯ , 𝑥!) ∈ 𝐵!B𝑥#" = 1,⋯ , 𝑥## = 1C.  
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Let 𝐿' = {(𝑥", ⋯ , 𝑥!) ∈ 𝐵!| ∑ 𝑥# = 𝑘!
#(" } – we call it the 

𝑘-th layer of 𝐵!.  
The shadow 𝛿#ℳ of ℳ ⊆ 𝐸! is the set of vertices of 𝐿#, 

which are less than some vertex of ℳ.  
In the case when all vertices of ℳ are from the same layer, 

e.g., from the 𝑘-the layer, then the lower (respectively, upper) 
shadow of ℳ is 𝛿'*"ℳ (respectively, 𝛿'-"ℳ), i.e., the set 
of vertices from the (𝑘 − 1)-th layer, which are less than some 
vertex of ℳ (respectively, from the (𝑘 + 1)-th layer, which 
are greater than some vertex of ℳ). 

Boolean function 𝑓: 𝐵! → {0,1} is called monotone if for 
every two vertices 𝛼, 𝛽 ∈ 𝐵! , if  𝛼 ≺ 𝛽  then 𝑓(𝛼) ≤ 𝑓(𝛽). 
Vertices of 𝐵!, where 𝑓 takes the value “1” are called units or 
true points of the function; vertices, where 𝑓 takes the value 
“0” are called zeros or false points of the function. 𝛼" is a 
lower unit (or minimal true point) of the function if 𝑓(𝛼") =
1, and 𝑓(𝛼) = 0 for every 𝛼 ∈ 𝐵!, such that 𝛼 ≺ 𝛼". 𝛼) is an 
upper zero (or maximal false point) of the function if 𝑓(𝛼)) =
0 , and 𝑓(𝛼) = 1  for every 𝛼 ∈ 𝐵!  such that  𝛼) ≺ 𝛼 . 
min	𝑇(𝑓)  and max	𝐹(𝑓)  denote the sets of minimal true 
points and maximal false points, respectively. Obviously, 
min	𝑇(𝑓) and max	𝐹(𝑓) are Sperner families in 𝐵!. 

Formally, the work with MBFs started in 1897, with the 
issue of counting their number [16]. The first algorithmic and 
complexity-related considerations belong to [17], where, in 
particular, the valuable concept of resolving subsets was 
introduced. The final asymptotic estimate about the number of 
MBFs of 𝑛 variables was obtained in [18]. The technique on 
how to introduce and analyze MBFs, is basically presented in 
[7,14,15,1,10,8,9,19]. 

The Hansel chain structure [7] was invented in 1966 and 
played one of the central roles in MBF-related algorithmic 
techniques. The next valuable step towards this was taken by 
Tonoyan [10], who invented a set of simple procedures (chain 
algebra) that serve all the actual queries about Hansel chains, 
providing a technical solution to all the problems related to 
algorithms with Hansel chains, without constructing and 
keeping them in computer memory. In continuation, [8] 
presented a slightly modified and simplified version of [10] 
by using two tools: enumeration of all chains, and a procedure 
of finding the 𝑖-th vertex of the 𝑗-th chain. Then, an optimized 
procedure is used to propagate newly found values to the 
chains by a divide-and-conquer manner. 

In the MBF recognition problem using membership 
queries, the goal is to determine an unknown MBF of 𝑛 
variables using as few queries as possible. The function can 
be fully recognized by finding all its upper zeros (and/or lower 
units) [17]. The Shannon complexity of finding all upper zeros 
(lower units) of an arbitrary monotone Boolean function of 𝑛 
variables is 𝐶!

⌊!/0⌋ + 𝐶!
⌊!/0⌋-" [7]. 

Another recognition structure is used in [9]. For even 𝑛, 
𝐵! is split according to two variables and the recognition in 
every sub-cube starts from its two middle layers. For odd 𝑛, 
firstly 𝐵! is split according to one variable, then as each sub-
cube now has an even size, the procedure for even sizes is 
applied. This provides optimal recognition of all MBFs in the 
sense of Shannon complexity. Unfortunately, while simple 
and attractive, this approach cannot be used in practical 
algorithms for arbitrary functions. Finally, it is to mention the 
work [19] that considers not the Shannon complexity but the 
individual complexity of MBF given by its resolving set size. 

In general, tasks related to the recognition of MBFs may 
have different formulations. One task is to recognize a 
particular unknown function, knowing that it belongs to the 
class of MBFs or to one of its subclasses. Another task is to 
start with partial knowledge about the unknown function. One 
more case is when the number of queries is restricted by some 
number 𝐾 and the goal is to maximize the recognized part of 
the function [37]. Similar problems can be formulated for 
specific classes of Boolean functions. Examples of classes are 
as follows: 

 
KK-MBF Kruskal-Katona MBFs arise as a result of 

the shadow minimization theorem 
[20,14,15]. KK-MBFs are monotone 
Boolean functions but they also intersect 
the cube layers along their initial segments 
of the lexicographic order. The 
complement of the KK-MBF area in 𝐵! 
has a similar property; it is related to the 
initial segments of the co-lexicographic 
order. 

 
Symmetric MBF This is a trivial class of functions that 

takes a constant value on the cube layers. 
Trivial, but these functions are practically 
important. Examples are majority 
functions, parity functions, and others.  

 
Threshold MBF Functions are defined by a linear 

inequality of weighted sums of variables.  
 

The combinatorial complexity of reconstruction in these 
and other subclasses of MBF is not well studied. For example, 
monotone Boolean functions, with zeros and ones separated 
by two middle layers of the cube, are the most difficult 
functions for query-based reconstruction when only the 
monotonicity of the function is given. But if it is known that 
the function belongs to the class of symmetric functions, the 
reconstruction of this function can be done by 𝑛 queries. The 
same function also belongs to KK-MBF class. 

III. KK-MBF RECOGNITION 

A. Identification of KK-MBF type functions 
Definition 1: Let 𝑓 be a monotone Boolean function over 𝐵!.  
𝑓  is called a KK-MBF type function if zeros of 𝑓 on the layers 
of 𝐵!  compose initial segments of the lexicographic order 
(left parts of layers, uncolored circles in Fig.1).  
 
Initial formulations of shadow theorem in [20,14] are given in 
terms of co-lexicographic order but this structure was later 
simplified to the lexicography in [32-34,25], 1977 and [26], 
1979. The name KK also refers to an extension of the basic 
result of shadow theorem to many layers and to the existence 
of Sperner families. Usually, a KK-MBF function 𝑓 is given 
through its characteristics, #min	𝑇(𝑓) = 〈𝑝#" , 𝑝#$ , ⋯ , 𝑝#%〉 , 
where 𝑝#& is the number of lower units of 𝑓 on the 𝑖2-th layer. 
An example is given in Fig.1. 
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Fig.1 KK-MBF function with 𝑝0 = 2, 𝑝3 = 1, 𝑝4 = 1 

 

B. Resolving Sets 
Let us introduce some general terms, from Boolean 

function deciphering (reconstruction) [17]. Suppose we are 
given a certain class 𝒮 of Boolean functions and 𝑓 ∈ 𝒮.  
Definition 2: A set of vertices 𝐺(𝑓, 𝒮)  of 𝐵!  is called a 
resolving set for the pair (𝑓, 𝒮), if from the fact that: 

a) a function 𝑔 belongs to 𝒮, and	 
b) 𝑔(𝛼) = 𝑓(𝛼) for 𝛼 ∈ 𝐺(𝑓, 𝒮), 

it follows that 𝑔 = 𝑓. 
To reconstruct a function, it is sufficient to determine its 

values on some of its resolving sets. Resolving set 𝐺(𝑓, 𝒮) is 
called a deadlock resolving set for (𝑓, 𝒮), if no subset of it is 
resolving for the pair (𝑓, 𝒮). Each MBF, in class 𝒮 =MBF, 
has a unique deadlock resolving set that is included in its all 
resolving sets. This deadlock resolving set is 𝐺(𝑓) =
	min	𝑇(𝑓) ∪ max	𝐹(𝑓) [17]. Mention that this is not the case 
for other functions and classes, for instance, for the class of 
symmetric Boolean functions, there are no unique deadlock 
resolving sets. 

In continuation of our considerations with KK-MBF, it 
is convenient to take intersections of sets min	𝑇(𝑓)  and 
max	𝐹(𝑓) with layers 𝐿' of 𝐵!, denoting them by 𝑂'(𝑓) and 
𝑍'(𝑓),   correspondingly, and their sizes, - by 𝑝'(𝑓)  and 
𝑞'(𝑓). 

We formulate two obvious properties for a KK-MBF type 
function 𝑓, and call them horizontal and vertical conditions.  
Cond-h:  

(1) if 𝑓(𝛼) = 0 for a vertex 𝛼  of some layer 𝐿' , then 
𝑓(𝛽) = 0 for all 𝛽 ∈ 𝐿' lexicographically preceding 
𝛼,  (𝛽 ≼$%& 𝛼),  

(2) if 𝑓(𝛼) = 1 for a vertex 𝛼  of some layer 𝐿' , then 
𝑓(𝛽) = 1  for all 𝛽  of 𝐿'  lexicographically 
succeeding 𝛼,  (𝛽 ≽$%& 𝛼). 

Cond-v: 
(1) if 𝑓(𝛼) = 0 for a vertex 𝛼, then 𝑓(𝛽) = 0 for all 𝛽, 

𝛽 ≼ 𝛼 (component-wise order), 
(2) if 𝑓(𝛼) = 1 for a vertex 𝛼, then 𝑓(𝛽) = 1 for all 𝛽, 

𝛽 ≽ 𝛼 (component-wise order). 
These conditions, applied recursively, define a domain for 
each vertex 𝛼 ∈ 𝑓; denote it by 𝑑(𝑓, 𝛼). 
 
Definition 3. A zero vertex 	𝛼 of a KK-MBF type function 𝑓 
is called a zero corner point if: 

(1) 𝑓(𝛽) = 1 for all 𝛽  from the same layer, such that 
𝛽 ≻$%& 𝛼, and 

(2) 𝑓(𝛽) = 1 for all 𝛽, 𝛼 ≺ 𝛽 (component-wise order). 
Similarly, a unit vertex 𝛼 of a KK-MBF type function 𝑓 is 
called one corner point if: 

(1) 𝑓(𝛽) = 0  for all 𝛽  from the same layer such that 
𝛽 ≺$%& 𝛼, and 

(2) 𝑓(𝛽) = 0 for all 𝛽, 𝛽 ≼ 𝛼 (component-wise order). 
 

Let 𝑧'(𝑓)  denote the set of all zero corner points, and 
𝑜'(𝑓) denote the set of all one corner points of 𝑓. 𝑓 ∈KK-
MBF is a monotone function and besides the 𝑧'(𝑓) and 𝑜'(𝑓) 
we will use for it notations 𝑍'(𝑓) and 𝑂'(𝑓), and 𝑝'(𝑓) and 
𝑞'(𝑓), for the corresponding sets and their sizes as well. 

 
Proposition 1. Each monotone Boolean function 𝑓  of class 
KK-MBF has a unique deadlock resolving set that is included 
in its all resolving sets. This deadlock resolving set for 𝑓 is the 
set 𝑔(𝑓) = 𝑧(𝑓) ∪ 𝑜(𝑓). 

C. Identification Procedures 
For a general MBF, it is well-known that |𝑝'(𝑓) + 𝑞'(𝑓)| 

can reach the value 𝐶!
⌊!/0⌋ + 𝐶!

⌊!/0⌋-" and as a consequence, 
recognition of these functions cannot be done in a lesser 
complexity. Our first notion about the KK-MBF is that for 
them |𝑧(𝑓) ∪ 𝑜(𝑓)| cannot become larger than 2𝑛, that limits 
the complexity of recognition of such functions. 

Concerning the issue about the size of deadlock resolving 
set we may refer to the Theorem 1 of [26] and to the [36] (this 
size is not larger than 𝑛). But in our case, 2𝑛 is relatively 
small and is acceptable as a complexity estimation. The 
problem is how to effectively find the mentioned corner 
points. 

A useful step and exercise in recognition is determination 
of the first and last nontrivial layers (trivial layersare all-zero 
and all-one value layers). This can be done by bisections of 
two chains - chains of all first and last elements of the 
lexicographic order of layers, from 0 to 𝑛. For instance, in left 
chain, we seek for two neighbour layers 𝑘  and 𝑘 + 1  with 
values 0 and 1 on the chain. 𝑘 + 1 is the lowest layer with all 
1 values. The bisection procedure requires 𝑙𝑜𝑔𝑛 queries to the 
oracle. After this we will know the maximum layer with all 0 
and minimum layer with all 1 values of function. 

If the vertices on layers of 𝐵!  are ordered 
lexicographically, we can find any corner candidate point 𝛼𝒌 
on the layer with no more than log0(𝐶!' + 1) queries. 
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Thus, knowing that 𝑓 is a KK-MBF type function, we can 
recognize it by ∑ log0(𝐶!' + 1)!

'("  queries. A very rough 
estimate of this would be O(𝑛0).  

In general description of structural properties of KK-MBF 
functions, it is worth mentioning, that the notion of vertex 
domain generates a partial order over the vertices of 𝐵! . 
Corners are analogues of the maximal intervals of Boolean 
functions in 𝐵! . Sets of all corner point (for zeros and for 
ones) are analogues of Sperner families in 𝐵!. These sets and 
relations are an interesting research topic today. 

D. Memory minimization 
Consider some algorithmic issues. Not to keep all 2! vertices 
in computer memory, we can use sub-cube structures of the 
layers. 

We will use 𝛼2'  for the 𝑗 -th element of 𝐿'  in the 
lexicographic order. Then the largest element of 𝐿'  in the 

lexicographic order is 𝛼6'#
' = (11⋯1jklkm

'

00⋯0jklkm
!*'

) , and the 

smallest is 𝛼"' =(00⋯0jklkm
!*'

11⋯1jklkm)
'

. 
Let 𝐵&"("

!*"  and 𝐵&"()
!*"  be the partitions of 𝐵! according to 

𝑥", and 𝐿',&"(" and  𝐿',&"() denote the parts of 𝐿'  in 𝐵&"("
!*"  

and 𝐵&"()
!*" , respectively. Then 𝛼" = (011⋯1jklkm

'

00⋯0jklkm
!*'*"

) is the 
lexicographically largest element of 𝐿',&"() , and 𝛼) =

(100⋯0jklkm
!*'

11⋯1jklkm
'*"

) is the lexicographically smallest element 
of 𝐿',&"(". 

Instead of taking the middle vertex of 𝐿'  to ask the 
function value, we take either 𝛼" or  𝛼) (for certainty, we will 
take 𝛼"). 

If 𝑓(𝛼") = 1 , then 𝑓(𝛼) = 1  for all 𝛼 ∈ 𝐿',&"("; 
therefore, the next vertex that we will take to ask the function 
value, is the largest element of  𝐿',&"(),&$() (the part of 𝐿' in   

𝐵&"(),&$()
!*0 ), this is 𝛼0 = (0011⋯1jklkm

'

00⋯0jklkm
!*'*0

). 
If 𝑓(𝛼") = 0 , then 𝑓(𝛼) = 0  for all 𝛼 ∈ 𝐿',&"() ; 

therefore the next vertex that we will take is the largest 
element of 𝐿',&"(",&$() (the part of 𝐿'  in 𝐵&"(",&$()

!*0 ), this is 

𝛼0 = (1011⋯1jklkm
'*"

00⋯0jklkm)
!*'*"

. 
In general, in 𝐵&"(7",⋯&!(7!

!*# , the largest element of 𝑘-th 

layer  is 𝜎"⋯𝜎# 11⋯1jklkm
&

00⋯0jklkm
8

, where 𝑥  is 𝑘  minus the 
number of 1s in 𝜎"⋯𝜎#, and 𝑦 is (𝑛 − 𝑘) minus the number 
of 0s in   𝜎"⋯𝜎#. 

In this way, after each query, we continue in a smaller 
sub-cube, and hence, the number of queries in each layer can 
be at most 𝑛 − 1. We get the same estimate but without either 
keeping all vertices in computer memory or calculating the 
given 𝑗-th vertex in the lexicographic order. 

As an example, consider the function given in Fig.1, and 
suppose that 𝑘 = 3. Then, 
𝛼" = (01110), and since 𝑓(01110) = 0, the next vertex is 
𝛼0 = (10110). 𝑓(10110) = 1, and it follows that the next is 
𝛼3 = (10011). 𝑓(10011) = 1. 
In this way, we found the corner points 𝑓(01110) = 0 and 
𝑓(10011) = 1 of the third layer. 

IV. CARDINALITY OF KK-MBF CLASS 
One more important issue is the size of the whole class of KK 
functions. First, let us note that the function, given through 
𝑝!/0 = 𝐶!

!/0 (with all other layer characteristics equal to 0), 
belongs to the class KK-MBF and is the only function with 
the largest number of lower units. Therefore, to count the 
number of KK-MBF functions, we need to consider the 
number of non-negative integer partitions for an arbitrary 
positive integer 𝑝, 1 ≤ 𝑝 ≤ 𝐶!

!/0 :  𝑝 = 𝑝" + 𝑝0 +⋯+ 𝑝!*" 
(excluding the boundary cases 𝑝 = 𝑝) = 1 and 𝑝 = 𝑝! = 1), 
such that 0 ≤ 𝑝" ≤ B[𝛼"9, 𝛼"$ ]B, 0 ≤ 𝑝0 ≤ B[𝛼09, 𝛼0$ ]B,	  ⋯ , 0 ≤
𝑝!*" ≤ B[𝛼!*"9 , 𝛼!*"$ ]B, where [𝛼29, 𝛼2$] is the feasible interval 
of vertices on the 𝑗-th layer with 𝛼29 the smallest and 𝛼2$  the 
largest element in the lexicographic order. These smallest and 
largest elements are defined in the following way. For all 
intervals, 𝛼29 is the lexicographically smallest element of the 
𝑗 -th layer. As for the largest elements, - 𝛼"$  is the largest 
element of the first layer. To find 𝛼0$ , we consider the smallest 
element of 𝛿"-"ℳ" , where ℳ"  is the final 𝑚"  elements on 
the 1-st layer in the lexicographic order, and 𝛼0$  is the previous 
to it vertex. To find 𝛼3$ , we consider the smallest element of 
𝛿0-"ℳ0, where ℳ0 is the next 𝑚0 elements on the 2-nd layer 
in the lexicographic order, after 𝛿"-"ℳ" , and 𝛼3$  is the 
previous to it vertex. 

In general, 𝛼2$ is the previous to the smallest element of 
𝛿2ℳ2*"  in the lexicographic order, where ℳ2*"  is the next 
𝑝2*" elements of the (𝑗 − 1)-th layer after  𝛿2*"ℳ2*0. 

 
In accordance with this, taking only those functions that have 
only 1 corner point in some layer of the cube, we obtain 2! 
KK-MBF functions. 

V. CONCLUDING REMARKS 
Boolean functions are not only a means of computing 
functional dependencies, but also represent a suitable 
mathematical apparatus for modeling data science systems. 
The limitations of models and the structure of their joint 
collections are reduced to considering Boolean functions that 
have the property of monotonicity. However, decoding 
monotone Boolean functions is a multifaceted problem, and 
there remain many unsolved or inefficiently solved problems 
in this environment. Combinatorial constructions have been 
considered in some detail, but they are complex and often 
reduced to enumeration (brute-force). One possible new 
approach is to bring in a new resource, namely that of artificial 
intelligence [37]. In this formulation, the emphasis is placed 
on solving a large number of problems of the class under 
consideration, accumulating the results of solutions in the 
form of a database, training on them, and not solving but 
recognizing the solution of the problem under consideration 
by analyzing the parameters of the problem and the database 
information. The problem in this formulation is already 
becoming popular, and our first results related to it refer to 
decoding arbitrary monotone Boolean functions and are 
presented in [37].  
Another possible approach continues the first one and seeks 
ways of refining, and reconstructing the problem constraints, 
with subtypes of monotone Boolean functions appearing, the 
decoding of which requires refined approaches, and the 
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associated algorithms, whether combinatorial or based on 
machine learning, that can be practically implemented. There 
is a list of practical problems in big data analytics that reduce 
to the diverse classes of monotone Boolean functions. We 
begin the study of one of the classes of such functions - 
shadow minimized Boolean functions, for subsets of finite 
sets. We proceeded from the well-known solution of the 
problem for layers, formulated in the form of the Kruskal-
Katona theorem, and on the extension of this fact to all layers 
of the cube, when the existence conditions for Sperner 
systems are obtained. We were able to show that the class of 
these functions has the structure of a generating set, which is 
not a necessary property of arbitrary classes of functions. 
Basic structures of data analysis of the problem of 
identification of these functions, details of memory 
organization in the optimal mode are also given, but we 
consider the beginning of these investigations as the main 
step, and we think that subsequent investigations will give 
acceptable complexity results for solving these problems, both 
in this and in other systems of functions with constraints. 
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