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Abstract—In this paper, we prove that 𝑫𝑫𝒎𝒎(𝒏𝒏) , the set of 
hypergraphic sequences of all simple hypergraphs ([𝒏𝒏],𝑬𝑬), 
where [𝒏𝒏] = {𝟏𝟏,𝟐𝟐,⋯ ,𝒏𝒏}, and |𝑬𝑬| = 𝒎𝒎; being a subset of 𝒏𝒏 -
dimensional 𝒎𝒎 + 𝟏𝟏 -valued grid 𝜩𝜩𝒎𝒎+𝟏𝟏

𝒏𝒏 , is not a convex set in 
𝜩𝜩𝒎𝒎+𝟏𝟏
𝒏𝒏 ; also, we characterize the smallest convex set containing 
𝑫𝑫𝒎𝒎(𝒏𝒏). 
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I. INTRODUCTION  
The existence of simple uniform hypergraphs with a given 
degree sequence was a long-standing open problem ([1-6]); in 
2018, the NP-completeness of the problem was proved [7]. 
The existence of simple hypergraphs with a given degree 
sequence (without given sizes of hyperedges) is not easier 
than the case of uniform hypergraphs ([8]). Characterization 
of 𝐷𝐷𝑚𝑚(𝑛𝑛) , - the set of all degree sequences of simple 
hypergraphs with 𝑛𝑛  vertices and 𝑚𝑚  hyperedges, is 
investigated in [9-12]. The problem has its interpretation in 
terms of multidimensional binary cubes; it is also known as a 
special case in discrete tomography problems, when an 
additional constraint/requirement – non-repetition of rows, is 
imposed [13-14]. Structures, properties, and several related 
results were also obtained for  𝐷𝐷𝑚𝑚(𝑛𝑛). Convex hull of degree 
sequences of 𝑘𝑘-uniform hypergraphs was investigated in [4], 
[15-17]. In [16], it is verified computationally that the set of 
degree sequences for 𝑘𝑘  -uniform hypergraphs is the 
intersection of a lattice and a convex polytope for 𝑘𝑘 = 3 and 
𝑛𝑛 ≤ 8. [17] shows that this does not hold for 𝑘𝑘 ≥ 3and 𝑛𝑛 ≥
𝑘𝑘 + 13.  

In this paper, we prove that 𝐷𝐷𝑚𝑚(𝑛𝑛), being a subset of the 
𝑛𝑛 -dimensional 𝑚𝑚 + 1-valued grid 𝛯𝛯𝑚𝑚+1

𝑛𝑛 , is not a convex set 
in 𝛯𝛯𝑚𝑚+1

𝑛𝑛 ; also, we characterize the smallest convex set 
containing 𝐷𝐷𝑚𝑚(𝑛𝑛). This paper is an extended version of [18], 
where some preliminary results were presented without 
proofs. 

The rest of the paper is organized as follows. Section 2 
presents necessary definitions, preliminaries, and basic 
concepts. Main results are given in Section 3.  

II. PRELIMINARIES 

A. Hypergraph degree sequences 
A hypergraph 𝐻𝐻 is a pair (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the vertex set of 
𝐻𝐻, and 𝐸𝐸, the set of hyperedges, is a collection of non-empty 
subsets of 𝑉𝑉. The degree of a vertex 𝑣𝑣 of 𝐻𝐻, denoted by 𝑑𝑑(𝑣𝑣), 
is the number of hyperedges in 𝐻𝐻 containing 𝑣𝑣. A hypergraph 
𝐻𝐻 is simple if it has no repeated hyperedges. A hypergraph 𝐻𝐻 
is 𝑟𝑟-uniform if all hyperedges contain 𝑟𝑟-vertices.  
Let  𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑛𝑛} . 𝐷𝐷(𝐻𝐻) = (𝑑𝑑(𝑣𝑣1),𝑑𝑑(𝑣𝑣2),⋯ ,𝑑𝑑(𝑣𝑣𝑛𝑛)) 
is the degree sequence of hypergraph 𝐻𝐻  . A sequence 𝑑𝑑 =
(𝑑𝑑1,𝑑𝑑2,⋯ ,𝑑𝑑𝑛𝑛) is hypergraphic if there is a simple hypergraph 
𝐻𝐻 with the degree sequence 𝑑𝑑. For a given 𝑚𝑚, 0 < 𝑚𝑚 ≤ 2𝑛𝑛, 
let 𝐻𝐻𝑚𝑚(𝑛𝑛) denote the set of all simple hypergraphs ([𝑛𝑛],𝐸𝐸), 
where [𝑛𝑛] = {1,2,⋯ ,𝑛𝑛} , and |𝐸𝐸| = 𝑚𝑚 ; and 𝐷𝐷𝑚𝑚(𝑛𝑛)   denote 
the set of all hypergraphic sequences of hypergraphs in 
𝐻𝐻𝑚𝑚(𝑛𝑛). 
 
B. Monotone Boolean functions 
Let 𝐵𝐵𝑛𝑛 = {(𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛) | 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑖𝑖 = 1,⋯ ,𝑛𝑛}  denote the 
set of vertices of the 𝑛𝑛-dimensional binary (unit) cube. 

We define also partition/splitting of 𝐵𝐵𝑛𝑛 into two (𝑛𝑛 − 1)-
dimensional sub-cubes according to the values of the binary 
variables; for arbitrary 𝑥𝑥𝑖𝑖: 

𝐵𝐵𝑥𝑥𝑖𝑖=0
𝑛𝑛−1 = {(𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛) ∈ 𝐵𝐵𝑛𝑛|𝑥𝑥𝑖𝑖 = 0}  and 

𝐵𝐵𝑥𝑥𝑖𝑖=1
𝑛𝑛−1 = {(𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛) ∈ 𝐵𝐵𝑛𝑛|𝑥𝑥𝑖𝑖 = 1}.  

Any subset ℳ ⊆ 𝐵𝐵𝑛𝑛  will be partitioned into 
  ℳ𝑥𝑥𝑖𝑖=1 ⊆ 𝐵𝐵𝑥𝑥𝑖𝑖=1

𝑛𝑛−1  and ℳ𝑥𝑥𝑖𝑖=0 ⊆ 𝐸𝐸𝑥𝑥𝑖𝑖=0
𝑛𝑛−1  . 

An integer vector   𝑆𝑆 = (𝑠𝑠1,⋯ , 𝑠𝑠𝑛𝑛) is called associated vector 
of partitions of the set ℳ ⊆ 𝐸𝐸𝑛𝑛  , if 𝑠𝑠𝑖𝑖 = �ℳ𝑥𝑥𝑖𝑖=1� , 𝑖𝑖 =
1,⋯ ,𝑛𝑛.  
Boolean function 𝑓𝑓:𝐵𝐵𝑛𝑛 → {0,1}  is called monotone if for 
every two vertices 𝛼𝛼,𝛽𝛽 ∈ 𝐵𝐵𝑛𝑛 , if  𝛼𝛼 ≺ 𝛽𝛽  then 𝑓𝑓(𝛼𝛼) ≤ 𝑓𝑓(𝛽𝛽). 
Vertices of 𝐵𝐵𝑛𝑛, where 𝑓𝑓 takes the value “1” are called units or 
true points of the function; vertices, where 𝑓𝑓 takes the value 
“0” are called zeros or false points of the function.  
 
C. Characterization of 𝐷𝐷𝑚𝑚(𝑛𝑛) 
Clearly, every integer sequence of length 𝑛𝑛  with all 
component values between 0 and 𝑚𝑚, can serve potentially as 
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a degree sequence of some hypergraph with the vertex set [𝑛𝑛] 
and with 𝑚𝑚  hyperedges. Thus, 𝐷𝐷𝑚𝑚(𝑛𝑛) ⊆ {(𝑎𝑎1,⋯ , 𝑎𝑎𝑛𝑛)|0 ≤
𝑎𝑎𝑖𝑖 ≤ 𝑚𝑚}; we denote this set by 𝛯𝛯𝑚𝑚+1

𝑛𝑛 . We place a component-
wise partial order on 𝛯𝛯𝑚𝑚+1

𝑛𝑛 : (𝑎𝑎1,⋯ , 𝑎𝑎𝑛𝑛) ≼ (𝑏𝑏1,⋯ , 𝑏𝑏𝑛𝑛) if and 
only if 𝑎𝑎𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 for all 𝑖𝑖. (𝛯𝛯𝑚𝑚+1

𝑛𝑛 ,≼) is a partial ordered set for 
which the rank of an element is given by 𝑟𝑟(𝑎𝑎1,⋯ , 𝑎𝑎𝑛𝑛) = 𝑎𝑎1 +
⋯+ 𝑎𝑎𝑛𝑛. 
Opposite elements in 𝛯𝛯𝑚𝑚+1

𝑛𝑛  
A pair of elements (𝑑𝑑, �̅�𝑑)  of 𝛯𝛯𝑚𝑚+1

𝑛𝑛  are called opposite if one 
can be obtained from the other by inversions of component 
values, i.e., if 𝑑𝑑 = (𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛) , then �̅�𝑑 = (𝑚𝑚 − 𝑑𝑑1,⋯ ,𝑚𝑚 −
𝑑𝑑𝑛𝑛). 
Boundary elements of 𝐷𝐷𝑚𝑚(𝑛𝑛) 
(𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛) ∈ 𝐷𝐷𝑚𝑚(𝑛𝑛) is an upper boundary /lower boundary/ 
element of 𝐷𝐷𝑚𝑚(𝑛𝑛)  if no (𝑎𝑎1,⋯ , 𝑎𝑎𝑛𝑛) ∈ 𝛯𝛯𝑚𝑚+1

𝑛𝑛  with 
(𝑎𝑎1,⋯ , 𝑎𝑎𝑛𝑛) > (𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛) / with (𝑎𝑎1,⋯ , 𝑎𝑎𝑛𝑛) < (𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛) / 
belongs to 𝐷𝐷𝑚𝑚(𝑛𝑛). 
Let 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥  and 𝐷𝐷�𝑚𝑚𝑖𝑖𝑛𝑛  denote the sets of upper and lower 
boundary elements of 𝐷𝐷𝑚𝑚(𝑛𝑛), respectively. 
Interval/subgrid in 𝛯𝛯𝑚𝑚+1

𝑛𝑛 . 
For a pair of elements 𝑑𝑑′,𝑑𝑑′′, of 𝛯𝛯𝑚𝑚+1

𝑛𝑛  with 𝑑𝑑′ ≤ 𝑑𝑑′′ , 
𝐸𝐸(𝑑𝑑′,𝑑𝑑′′)  denotes the minimal subgrid/interval in 𝛯𝛯𝑚𝑚+1

𝑛𝑛  
spanned by these elements, i.e., 𝐸𝐸(𝑑𝑑′,𝑑𝑑′′) = {𝑎𝑎 ∈ 𝛯𝛯𝑚𝑚+1

𝑛𝑛 |𝑑𝑑′ ≤
𝑎𝑎 ≤ 𝑑𝑑′′}. 
 
We will need also some preliminary results from [Sah, 2009]: 
 
Lemma 1. 𝑑𝑑 = (𝑑𝑑1,⋯ ,𝑑𝑑𝑖𝑖 ,⋯ ,𝑑𝑑𝑛𝑛)  belongs to 𝐷𝐷𝑚𝑚(𝑛𝑛)  if and 
only if  �̅�𝑑𝑖𝑖 = (𝑑𝑑1,⋯ ,𝑚𝑚 − 𝑑𝑑𝑖𝑖 ,⋯ ,𝑑𝑑𝑛𝑛) belongs to 𝐷𝐷𝑚𝑚(𝑛𝑛), for 
arbitrary 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 . 
Lemma 2.   For each element �̂�𝑑 ∈ 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥  there exists its 
opposite element �̅̂�𝑑 ∈ 𝐷𝐷�𝑚𝑚𝑖𝑖𝑛𝑛, and vice versa. Thus,  �𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥� =
�𝐷𝐷�𝑚𝑚𝑖𝑖𝑛𝑛�. 
Lemma 3.  
For every element �̂�𝑑 = (�̂�𝑑1,⋯ , �̂�𝑑𝑛𝑛)  of 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥  �̂�𝑑𝑖𝑖 ≥ 𝑚𝑚 − �̂�𝑑𝑖𝑖  ;  
and for every element �̌�𝑑 = (�̌�𝑑1,⋯ , �̌�𝑑𝑛𝑛)  of 𝐷𝐷�𝑚𝑚𝑖𝑖𝑛𝑛  �̌�𝑑𝑖𝑖 ≤ 𝑚𝑚 −
�̌�𝑑𝑖𝑖 , 𝑖𝑖 = 1,⋯ ,𝑛𝑛. 
 
Let  𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛  denote the element of 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 , which has the 
minimum rank among all elements of 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑟𝑟( 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛) =

min
𝑑𝑑∈𝐷𝐷�𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟(𝑑𝑑). 

Lemma 4. 
𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛  has components equal to 𝑚𝑚 , if 𝑚𝑚 ≤ 2𝑛𝑛−1. 
 
Theorem 1. 𝐷𝐷𝑚𝑚(𝑛𝑛) = ⋃ 𝐸𝐸(𝐷𝐷� ,𝐷𝐷�)𝐷𝐷�∈𝐷𝐷�𝑚𝑚𝑚𝑚𝑚𝑚,𝐷𝐷�∈𝐷𝐷�𝑚𝑚𝑖𝑖𝑚𝑚 , where (𝐷𝐷�,𝐷𝐷�) 
are pairs of opposite elements. 
 
It is worth noting the relation of  𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥   to the 
monotone Boolean functions defined on 𝐵𝐵𝑛𝑛 . Each subset of 
vertices of  𝐵𝐵𝑛𝑛 can be identified with the set of units of some 
Boolean function. In this manner, monotone Boolean 
functions represent a specific class of sets in 𝐵𝐵𝑛𝑛 . Let 𝑀𝑀𝑚𝑚 
denote the class of 𝑚𝑚-sets in  𝐵𝐵𝑛𝑛  represented by monotone 
Boolean functions with  𝑚𝑚 units, and let  𝐷𝐷𝑀𝑀𝑚𝑚 (𝑛𝑛) denote the 
class of corresponding associated vectors of partitions. 
 
Theorem 2. 
𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 ⊆ 𝐷𝐷𝑀𝑀𝑚𝑚 (𝑛𝑛) . 

III. NON-CONVEXITY OF 𝐷𝐷𝑚𝑚(𝑛𝑛) IN 𝛯𝛯𝑚𝑚+1
𝑛𝑛  

𝛯𝛯𝑚𝑚+1
𝑛𝑛  is an 𝑛𝑛 -dimensional integral polytope, - a convex 

polytope the vertices of which have all integer coordinates 
between 0 to 𝑚𝑚. Undefined terms can be found in [19-20]. 
By definition, the intervals 𝐸𝐸(𝐷𝐷�,𝐷𝐷�)  are convex subsets in 
𝛯𝛯𝑚𝑚+1
𝑛𝑛 . 

In this section, we prove that 𝐷𝐷𝑚𝑚(𝑛𝑛), being a union of convex 
sets  𝐸𝐸(𝐷𝐷�,𝐷𝐷�), is not convex in 𝛯𝛯𝑚𝑚+1

𝑛𝑛 . 
 
Theorem 3. 𝐷𝐷𝑚𝑚(𝑛𝑛) is convex for 𝑚𝑚 = 1, 2𝑛𝑛 − 1 , 2𝑛𝑛, and not 
convex for  1 < 𝑚𝑚 < 2𝑛𝑛 − 1.  
Proof. 

a) 𝑚𝑚 = 1  
There exists a unique monotone Boolean function with the 
single unit vertex (1,1,⋯ ,1) of 𝐵𝐵𝑛𝑛. Therefore, 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 consists 
of the single element (𝑚𝑚,𝑚𝑚,⋯ ,𝑚𝑚) , and this is the only 
possible case that 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 contains (𝑚𝑚,𝑚𝑚,⋯ ,𝑚𝑚). According to 
Lemma 2, 𝐷𝐷�𝑚𝑚𝑖𝑖𝑛𝑛  contains the single element (0,0,⋯ ,0)  . 
Then, 𝐷𝐷𝑚𝑚(𝑛𝑛) = 𝐸𝐸((0,0,⋯ ,0), (𝑚𝑚,𝑚𝑚,⋯ ,𝑚𝑚)) , and this 
coincides with 𝛯𝛯𝑚𝑚+1

𝑛𝑛 . 
b) 𝑚𝑚 = 2𝑛𝑛   

There exists a unique monotone Boolean function, with the set 
of unit vertices coinciding with the whole 𝐵𝐵𝑛𝑛. 

c) 𝑚𝑚 = 2𝑛𝑛 − 1     
There exists a unique monotone Boolean function, the set of 
unit vertices of which coincides with 𝐵𝐵𝑛𝑛\{(0,0,⋯ ,0)}.  
 
Thus, in b) and c), 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥  consists of a single element with 
components equal to 2𝑛𝑛−1 , and this is the only possible case 
that 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥  contains such an element. Hence, 𝐷𝐷𝑚𝑚(𝑛𝑛) =
𝐸𝐸((2𝑛𝑛−1,⋯ , 2𝑛𝑛−1), (2𝑛𝑛−1,⋯ , 2𝑛𝑛−1)). 
Thus, in a)-c), 𝐷𝐷𝑚𝑚(𝑛𝑛) is convex. 
 

d) 1 < 𝑚𝑚 < 2𝑛𝑛 − 1. 
Let 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 = {𝐷𝐷�1,⋯ ,𝐷𝐷�𝑟𝑟}  , 𝐷𝐷�𝑚𝑚𝑖𝑖𝑛𝑛 = {𝐷𝐷�1,⋯ ,𝐷𝐷�𝑟𝑟} ; 𝐷𝐷�𝑖𝑖 , 𝐷𝐷�𝑖𝑖  are 
opposite elements. 
We prove that there exist 𝐷𝐷�𝑖𝑖 ∈ 𝐷𝐷�𝑚𝑚𝑖𝑖𝑛𝑛  and 𝐷𝐷�𝑗𝑗 ∈ 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑖𝑖 ≠ 𝑗𝑗 
such that 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑗𝑗) is not contained in 𝐷𝐷𝑚𝑚(𝑛𝑛).  
Firstly, we notice that 𝐷𝐷�𝑖𝑖 ≤ 𝐷𝐷�𝑗𝑗   for arbitrary  𝑖𝑖, 𝑗𝑗 , since the 
components’ values of 𝐷𝐷�𝑗𝑗 are greater or equal to the middle 
value ⌈𝑚𝑚/2⌉, and the components’ values of  𝐷𝐷�𝑖𝑖- are less than 
or equal to the middle value ⌊𝑚𝑚/2⌋ (according to Lemma 3). 
Consider the following cases: 
1) 𝑚𝑚 ≤ 2𝑛𝑛−1. 
Let 𝐷𝐷�𝑗𝑗  be a minimal element of 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 (assume that 
components are in decreasing order): 𝐷𝐷�𝑗𝑗 = (𝑚𝑚, �̂�𝑑2

𝑗𝑗 ,⋯ , �̂�𝑑𝑛𝑛
𝑗𝑗 ) 

(according to Lemma 4, it has 𝑚𝑚  valued component). 
Consider another element 𝐷𝐷�𝑖𝑖 = (�̂�𝑑1𝑖𝑖 , �̂�𝑑2𝑖𝑖 ,⋯ , �̂�𝑑𝑛𝑛𝑖𝑖 )  of 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 , 
where �̂�𝑑1𝑖𝑖 < 𝑚𝑚. Such an element exists – it can simply be the 
vector obtained from 𝐷𝐷�𝑗𝑗 by components permutation, taking 
into account also that all the components of 𝐷𝐷�𝑗𝑗 cannot be equal 
to 𝑚𝑚. 
Consider the opposite to 𝐷𝐷�𝑖𝑖  element: 𝐷𝐷�𝑖𝑖 = (𝑚𝑚 − �̂�𝑑1𝑖𝑖 ,𝑚𝑚−
�̂�𝑑2𝑖𝑖 ,⋯ ,𝑚𝑚 − �̂�𝑑𝑛𝑛𝑖𝑖 ), and replace the first component with 𝑚𝑚; we 
obtain (𝑚𝑚,𝑚𝑚 − �̂�𝑑2𝑖𝑖 ,⋯ ,𝑚𝑚 − �̂�𝑑𝑛𝑛𝑖𝑖 ), which belongs to 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑗𝑗), 
but does not belong to 𝐷𝐷𝑚𝑚(𝑛𝑛), since according to Lemma 1, 
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(𝑚𝑚, �̂�𝑑2𝑖𝑖 ,⋯ , �̂�𝑑𝑛𝑛𝑖𝑖 )  should belong to 𝐷𝐷𝑚𝑚(𝑛𝑛) , which contradicts 
the fact that 𝐷𝐷�𝑖𝑖 is an element of  𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥. 
2) 𝑚𝑚 > 2𝑛𝑛−1. 
The proof is similar to the previous case, taking into account 
that all components of 𝐷𝐷�𝑚𝑚𝑚𝑚𝑥𝑥 cannot be equal to 2𝑛𝑛−1 , besides 
the case of 𝑚𝑚 = 2𝑛𝑛 − 1 . □ 
As an example, consider 𝐷𝐷4(3) in 𝛯𝛯53 given in Fig.1. (0,2,2) 
and (3,3,3)  belong to 𝐷𝐷4(3) , and (0,2,2) < (3,3,3) . 
However, the elements (0,3,2), (0,2,3), (0,3,3)  of 𝛯𝛯35𝑛𝑛 , 
which are greater than (0,2,2), and less than (3,3,3), - do not 
belong to 𝐷𝐷4(3). 

 
Fig. 1. Nonconvexity example 

 

IV. THE SMALLEST CONVEX SET CONTAINING 𝐷𝐷𝑚𝑚(𝑛𝑛) 
In this section, we characterize the smallest convex subset of  
𝛯𝛯𝑚𝑚+1
𝑛𝑛 , containing 𝐷𝐷𝑚𝑚(𝑛𝑛). We denote this set by 𝐶𝐶𝐷𝐷𝑚𝑚(𝑛𝑛). 

 

 
Fig. 2. Elements of 𝐶𝐶𝐷𝐷4(3) are colored (red and blue); 

elements of 𝐷𝐷4(3) are in red color. 
 
Theorem 4. 𝐶𝐶𝐷𝐷𝑚𝑚(𝑛𝑛) = ⋃ ⋃ 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑗𝑗)𝑟𝑟

𝑗𝑗=1
𝑟𝑟
𝑖𝑖=1 . 

Proof. 
It is clear that 𝐷𝐷𝑚𝑚(𝑛𝑛) ⊆ ⋃ ⋃ 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑗𝑗)𝑟𝑟

𝑗𝑗=1
𝑟𝑟
𝑖𝑖=1 . Now we prove 

that ⋃ ⋃ 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑗𝑗)𝑟𝑟
𝑗𝑗=1

𝑟𝑟
𝑖𝑖=1  is a convex set in 𝛯𝛯𝑚𝑚+1

𝑛𝑛 , and there is 
no smaller set in 𝛯𝛯𝑚𝑚+1

𝑛𝑛 , that contains 𝐷𝐷𝑚𝑚(𝑛𝑛). 
Firstly, we prove that ⋃ ⋃ 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑗𝑗)𝑟𝑟

𝑗𝑗=1
𝑟𝑟
𝑖𝑖=1  is convex in 𝛯𝛯𝑚𝑚+1

𝑛𝑛 .  
Let 𝑎𝑎, 𝑏𝑏 ∈ ⋃ ⋃ 𝐸𝐸(𝐷𝐷�𝑖𝑖,𝐷𝐷�𝑗𝑗)𝑟𝑟

𝑗𝑗=1
𝑟𝑟
𝑖𝑖=1 , and 𝑎𝑎 < 𝑏𝑏; we prove that the 

interval [𝑎𝑎, 𝑏𝑏] = {𝑐𝑐 ∈ 𝛯𝛯𝑚𝑚+1
𝑛𝑛 |𝑎𝑎 ≤ 𝑐𝑐 ≤ 𝑏𝑏}  belongs to 

⋃ ⋃ 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑗𝑗)𝑟𝑟
𝑗𝑗=1

𝑟𝑟
𝑖𝑖=1 , as well. If 𝑎𝑎, 𝑏𝑏 are boundary elements 

(upper or lower), or belong to some 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑖𝑖), then the proof 

is evident. Suppose that 𝑎𝑎, 𝑏𝑏 are not boundary elements, and 
𝑎𝑎 ∈ 𝐸𝐸(𝐷𝐷�𝑖𝑖,𝐷𝐷�𝑖𝑖) , 𝑏𝑏 ∈ 𝐸𝐸�𝐷𝐷�𝑗𝑗,𝐷𝐷�𝑗𝑗�, 𝑖𝑖 ≠ 𝑗𝑗 . In this case, every 
element 𝑐𝑐  from [𝑎𝑎, 𝑏𝑏]  belongs to 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑗𝑗)  /taking into 
account that 𝐷𝐷�𝑖𝑖 ≤ 𝐷𝐷�𝑗𝑗, for arbitrary 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑟𝑟/.  
On the other hand, ⋃ ⋃ 𝐸𝐸(𝐷𝐷�𝑖𝑖 ,𝐷𝐷�𝑗𝑗) ⊆ 𝐶𝐶𝐷𝐷𝑚𝑚(𝑛𝑛)

𝑟𝑟
𝑗𝑗=1

𝑟𝑟
𝑖𝑖=1 , - which 

implies that there is no smaller set in 𝛯𝛯𝑚𝑚+1
𝑛𝑛 , that contains 

𝐷𝐷𝑚𝑚(𝑛𝑛). □ 
Fig.2 demonstrates 𝐶𝐶𝐷𝐷4(3) in 𝛯𝛯53. 
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