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Abstract—In this paper, we prove that D, (n), the set of
hypergraphic sequences of all simple hypergraphs ([n], E),
where [n] = {1,2,---,n}, and |E| = m; being a subset of n -
dimensional m + 1-valued grid £7,,,, is not a convex set in
Em1; also, we characterize the smallest convex set containing
D,,(n).
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l. INTRODUCTION

The existence of simple uniform hypergraphs with a given
degree sequence was a long-standing open problem ([1-6]); in
2018, the NP-completeness of the problem was proved [7].
The existence of simple hypergraphs with a given degree
sequence (without given sizes of hyperedges) is not easier
than the case of uniform hypergraphs ([8]). Characterization
of D,,(n), - the set of all degree sequences of simple
hypergraphs with n vertices and m hyperedges, is
investigated in [9-12]. The problem has its interpretation in
terms of multidimensional binary cubes; it is also known as a
special case in discrete tomography problems, when an
additional constraint/requirement — non-repetition of rows, is
imposed [13-14]. Structures, properties, and several related
results were also obtained for D, (n). Convex hull of degree
sequences of k-uniform hypergraphs was investigated in [4],
[15-17]. In [16], it is verified computationally that the set of
degree sequences for k -uniform hypergraphs is the
intersection of a lattice and a convex polytope for k = 3 and
n < 8. [17] shows that this does not hold for k > 3and n >
k+13.

In this paper, we prove that D,,, (), being a subset of the
n -dimensional m + 1-valued grid =7}, is not a convex set
in 2., ; also, we characterize the smallest convex set
containing D,,,(n). This paper is an extended version of [18],
where some preliminary results were presented without
proofs.

The rest of the paper is organized as follows. Section 2
presents necessary definitions, preliminaries, and basic
concepts. Main results are given in Section 3.

https://doi.org/10.51408/csit2023_35

Il.  PRELIMINARIES

A. Hypergraph degree sequences

A hypergraph H is a pair (V, E), where V is the vertex set of
H, and E, the set of hyperedges, is a collection of non-empty
subsets of V. The degree of a vertex v of H, denoted by d(v),
is the number of hyperedges in H containing v. A hypergraph
H is simple if it has no repeated hyperedges. A hypergraph H
is r-uniform if all hyperedges contain r-vertices.

Let V ={v;,v;,,v}. D(H) = (d(v1),d(v2),+, d(vy))
is the degree sequence of hypergraph H . A sequence d =
(dy,d,, -+, dy) ishypergraphic if there is a simple hypergraph
H with the degree sequence d. For a given m, 0 < m < 2™,
let H,,,(n) denote the set of all simple hypergraphs ([n], E),
where [n] = {1,2,---,n}, and |E| = m; and D,,(n) denote
the set of all hypergraphic sequences of hypergraphs in
H,,(n).

B. Monotone Boolean functions
Let B™ = {(xy, -, x,) | x; € {0,1},i = 1,---,n} denote the
set of vertices of the n-dimensional binary (unit) cube.

We define also partition/splitting of B™ into two (n — 1)-
dimensional sub-cubes according to the values of the binary
variables; for arbitrary x;:

By 6 = {(x1,,x,) € B"|x; = 0} and

Br i = {(x1,,%n) € B"|x; = 1}.
Any subset M < B™ will be partitioned into

M1 © BEZh and My,—o € EX G

An integer vector S = (sq,+*,s,) is called associated vector
of partitions of the set M S E™ , if s; = |[My,oy|, i =
1, ,n.
Boolean function f:B™ — {0,1} is called monotone if for
every two vertices a, 8 € B™, if a < B then f(a) < f(B).
Vertices of B™, where f takes the value “1” are called units or
true points of the function; vertices, where f takes the value
“0” are called zeros or false points of the function.

C. Characterization of D, (n)
Clearly, every integer sequence of length n with all
component values between 0 and m, can serve potentially as
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a degree sequence of some hypergraph with the vertex set [n]
and with m hyperedges. Thus, Dm(n) c{(ay,+,a]0 <
a; < m}; we denote thls setby =7 . ;. We place a component-
wise partial order on £} .,: (a4, a,) < (by, -, b,) if and
only if a; < b; for all i. (£, .4, <) is a partial ordered set for
which the rank of an element is given by r(ay, -+, a,) = a; +
c+a,.

Opposite elements in =7, .,

A pair of elements (d,d) of Z%, are called opposite if one
can be obtained from the other by inversions of component
values, i.e., if d = (dy,*+,d,), thend = (m —dy, -+, m —
dy,).

Boundary elements of D,,, (n)

(dy, -, dy) € D, (n) is an upper boundary /lower boundary/
element of D,(n) if no (ay,-,a,) €5}, with
(aq,+,an) > (dy, -+, dy) Twith (ay, -+, a,) < (dy, -+, dyp) !

belongs to D,, (n).

Let D,,,, and D,,;,, denote the sets of upper and lower
boundary elements of D,, (n), respectively.

Interval/subgrid in =7 ;.

For a pair of elements d',d”, of E%,, with d'<d",
E(d',d'") denotes the minimal subgrid/interval in H,’}Hl
spanned by these elements, i.e., E(d',d") = {a € £}, ,1|d" <
a<d'}

We will need also some preliminary results from [Sah, 2009]:

Lemma 1. d = (d4,+,d;, -+, dy) belongs to D,,(n) if and

only if d; = (d,,--,m —d;,-,d,) belongs to D,,(n), for
arbitrary i,1 <i<n.

Lemma 2.  For each element d € D,,,, there exists its
opposite element d € D,,,;,, and vice versa. Thus, |Dpax| =
|Dmin|'

Lemma 3.

&n) of Bmax &i =>m— &i )
dvn) of Emin di <m-—

For every element d = (d,, -,
and for every element d = (dy, -,
di,i = 1,"',7’1

Let d,,;, denote the element of D,,,, , which has the
minimum rank among all elements of D,,qy , 7( dpmin) =
min r(d).

€Dmax

Lemma 4.
dmin has components equal to m , if m < 271,

Theorem 1. D,,,(n) = Upep,,,, 5ep,,;,, E(D, D), where (D, D)
are pairs of opposite elements.

It is worth noting the relation of D,,, to the
monotone Boolean functions defined on B™. Each subset of
vertices of B™ can be identified with the set of units of some
Boolean function. In this manner, monotone Boolean
functions represent a specific class of sets in B™. Let M,,
denote the class of m-sets in B™ represented by monotone
Boolean functions with m units, and let Dy, (n) denote the
class of corresponding associated vectors of partitions.

Theorem 2.
Dmax c DMm (Tl) .

1. NON-CONVEXITY OF D,,,(n) IN £}, 44
El .1 is an n-dimensional integral polytope, - a convex
polytope the vertices of which have all integer coordinates
between 0 to m. Undefined terms can be found in [19-20].
By definition, the intervals E(D, D) are convex subsets in
S
In this section, we prove that Dm(n) being a union of convex
sets E(D, D), is not convex in Z% ;.

Theorem 3. D,,,(n) is convex form = 1, 2™ — 1, 2", and not
convex for 1 <m < 2™ —1.
Proof.

am=1
There exists a uniqgue monotone Boolean function with the
single unit vertex (1,1,-++,1) of B™. Therefore, D,,,, consists
of the single element (m,m,---,m), and this is the only
possible case that D,,,, contains (m,m, ---,m). According to
Lemma 2, D,,;, contains the single element (0,0,---,0) .
Then, D,,(n) = E((0,0,---,0),(m,m,---,m)) , and this
coincides with =% ;.

bym = 2"
There exists a unique monotone Boolean function, with the set
of unit vertices coinciding with the whole B™.

cgm=2"-1
There exists a unique monotone Boolean function, the set of
unit vertices of which coincides with B™\{(0,0, ---,0)}.

Thus, in b) and c), D,,4, consists of a single element with
components equal to 2"~ , and this is the only possible case
that D,,,, contains such an element. Hence, D,,(n) =
E((Zn—l ., 2n—1)' (Zn—l' . Zn—l)).

Thus, in a)-c), D,,(n) is convex.

dl<m<2™-1.
Let Dmax = {Blr"'rﬁr} ’ Dmin = {51"":
opposite elements.
We prove that there exist D; € Dy, @nd D; € Dipgy, @ # j
such that E (D;, D)) is not contained in D, (n).
Firstly, we notice that D; < ﬁj for arbitrary i,j, since the
components’ values of ﬁj are greater or equal to the middle
value [m/2], and the components’ values of D;- are less than
or equal to the middle value [m/2] (according to Lemma 3).
Consider the following cases:
1)m< 2"t
Let D; be a minimal element of D, (assume that
components are in decreasing order): Dj = (m, c?j,n-,ci,b
(according to Lemma 4, it has m valued component).
Consider another element D; = (d,d5, -, d%) of Dy
where di < m. Such an element exists — it can simply be the
vector obtained from ﬁj by components permutation, taking
into account also that all the components of Dj cannot be equal
tom.
Consider the opposite to D; element: D; = (m — di,m —
1%,---,m — d5), and replace the first component with m; we
obtain (m,m — di, ---,m — d},), which belongs to E(D;, D)),
but does not belong to D,,,(n), since according to Lemma 1,

D,}; D;, D; are
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(m,ds, -+, d%) should belong to D,,(n), which contradicts
the fact that D; is an element of D,y, ;.

2)m > 2"

The proof is similar to the previous case, taking into account
that all components of D,,,, cannot be equal to 2"~ , besides
thecaseof m=2"—-1.0o

As an example, consider D,(3) in 22 given in Fig.1. (0,2,2)
and (3,3,3) belong to D,(3), and (0,2,2) < (3,3,3) .
However, the elements (0,3,2),(0,2,3),(0,3,3) of Z3¢,
which are greater than (0,2,2), and less than (3,3,3), - do not
belong to D, (3).

Fig. 1. Nonconvexity example

IV. THE SMALLEST CONVEX SET CONTAINING D, (n)

In this section, we characterize the smallest convex subset of
Zn+1, CoNtaining D,, (n). We denote this set by Cp, (-

Fig. 2. Elements of Cp, (5, are colored (red and blue);
elements of D,(3) are in red color.

Theorem 4. Cp ) = Uiy Uj—1 E(D;, D)).

Proof.

It is clear that D,,(n) € Ui, U}, E(D;, D;). Now we prove

that Uj—, U%-, E(D;, D)) is a convex set in &7, ;, and there is

no smaller setin =7 , ;, that contains D,,,(n).

Firstly, we prove that Uj_, U%_, E(D;, D;) is convex in &5, ;.

Leta,b € Ui, Uj_, E(D;, D;), and a < b; we prove that the

interval  [a,b] ={c€Z} ,Ja<c<b} belongs to
121U}, E(D;, D;), as well. If a, b are boundary elements

(upper or lower), or belong to some E (D, D;), then the proof

is evident. Suppose that a, b are not boundary elements, and
a€EMD;,D), beE(D;,D;), i#j. In this case, every
element ¢ from [a,b] belongs to E(D;,D;) /taking into
account that D; < Dj, for arbitrary 1 < i,j < r/.

On the other hand, Uj_, Uj_, E(D;, D;) € Cp,,ny, - Which
implies that there is no smaller set in Z,;, that contains
D, (n). O

Fig.2 demonstrates Cp, 3 in Z2.
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