On Nonconvexity of the Set of Hypergraphic Sequences

Hasmik Sahakyan Institute for Informatics and Automation Problems of NAS RA Yerevan, Armenia e-mail: hsahakyan@sci.am

Abstract—In this paper, we prove that $D_m(n)$, the set of hypergraphic sequences of all simple hypergraphs ([n], E), where $[n] = \{1, 2, \dots, n\}$, and |E| = m; being a subset of n-dimensional m + 1-valued grid \mathbb{Z}_{m+1}^n , is not a convex set in \mathbb{Z}_{m+1}^n ; also, we characterize the smallest convex set containing $D_m(n)$.

Keywords—Hypergraphic sequences, non-convexity

I. INTRODUCTION

The existence of simple uniform hypergraphs with a given degree sequence was a long-standing open problem ([1-6]); in 2018, the NP-completeness of the problem was proved [7]. The existence of simple hypergraphs with a given degree sequence (without given sizes of hyperedges) is not easier than the case of uniform hypergraphs ([8]). Characterization of $D_m(n)$, - the set of all degree sequences of simple hypergraphs with n vertices and m hyperedges, is investigated in [9-12]. The problem has its interpretation in terms of multidimensional binary cubes; it is also known as a special case in discrete tomography problems, when an additional constraint/requirement - non-repetition of rows, is imposed [13-14]. Structures, properties, and several related results were also obtained for $D_m(n)$. Convex hull of degree sequences of k-uniform hypergraphs was investigated in [4], [15-17]. In [16], it is verified computationally that the set of degree sequences for k -uniform hypergraphs is the intersection of a lattice and a convex polytope for k = 3 and $n \leq 8$. [17] shows that this does not hold for $k \geq 3$ and $n \geq 3$ k + 13.

In this paper, we prove that $D_m(n)$, being a subset of the n-dimensional m + 1-valued grid \mathbb{Z}_{m+1}^n , is not a convex set in \mathbb{Z}_{m+1}^n ; also, we characterize the smallest convex set containing $D_m(n)$. This paper is an extended version of [18], where some preliminary results were presented without proofs.

The rest of the paper is organized as follows. Section 2 presents necessary definitions, preliminaries, and basic concepts. Main results are given in Section 3.

II. PRELIMINARIES

A. Hypergraph degree sequences

A hypergraph H is a pair (V, E), where V is the vertex set of H, and E, the set of hyperedges, is a collection of non-empty subsets of V. The degree of a vertex v of H, denoted by d(v), is the number of hyperedges in H containing v. A hypergraph H is simple if it has no repeated hyperedges. A hypergraph H is r-uniform if all hyperedges contain r-vertices. Let $V = \{v_1, v_2, \dots, v_n\}$. $D(H) = (d(v_1), d(v_2), \dots, d(v_n))$ is the degree sequence of hypergraph H. A sequence d =

is the degree sequence of hypergraph H. A sequence $d = (d_1, d_2, \dots, d_n)$ is hypergraphic if there is a simple hypergraph H with the degree sequence d. For a given $m, 0 < m \le 2^n$, let $H_m(n)$ denote the set of all simple hypergraphs ([n], E), where $[n] = \{1, 2, \dots, n\}$, and |E| = m; and $D_m(n)$ denote the set of all hypergraphic sequences of hypergraphs in $H_m(n)$.

B. Monotone Boolean functions

Let $B^n = \{(x_1, \dots, x_n) \mid x_i \in \{0,1\}, i = 1, \dots, n\}$ denote the set of vertices of the *n*-dimensional binary (unit) cube.

We define also *partition/splitting* of B^n into two (n - 1)-dimensional sub-cubes according to the values of the binary variables; for arbitrary x_i :

$$B_{x_i=1}^{n-1} = \{(x_1, \cdots, x_n) \in B^n | x_i = 0\} \text{ and } B_{x_i=1}^{n-1} = \{(x_1, \cdots, x_n) \in B^n | x_i = 1\}.$$

Any subset $\mathcal{M} \subseteq B^n$ will be partitioned into

 $\mathcal{M}_{x_i=1} \subseteq B_{x_i=1}^{n-1}$ and $\mathcal{M}_{x_i=0} \subseteq E_{x_i=0}^{n-1}$.

An integer vector $S = (s_1, \dots, s_n)$ is called *associated vector* of partitions of the set $\mathcal{M} \subseteq E^n$, if $s_i = |\mathcal{M}_{x_i=1}|$, $i = 1, \dots, n$.

Boolean function $f: B^n \to \{0,1\}$ is called *monotone* if for every two vertices $\alpha, \beta \in B^n$, if $\alpha \prec \beta$ then $f(\alpha) \le f(\beta)$. Vertices of B^n , where f takes the value "1" are called *units* or *true points* of the function; vertices, where f takes the value "0" are called *zeros* or *false points* of the function.

C. Characterization of $D_m(n)$

Clearly, every integer sequence of length n with all component values between 0 and m, can serve potentially as

a degree sequence of some hypergraph with the vertex set [n]and with *m* hyperedges. Thus, $D_m(n) \subseteq \{(a_1, \dots, a_n) | 0 \le a_i \le m\}$; we denote this set by \mathcal{Z}_{m+1}^n . We place a componentwise partial order on \mathcal{Z}_{m+1}^n : $(a_1, \dots, a_n) \le (b_1, \dots, b_n)$ if and only if $a_i \le b_i$ for all *i*. $(\mathcal{Z}_{m+1}^n, \le)$ is a partial ordered set for which the rank of an element is given by $r(a_1, \dots, a_n) = a_1 + \dots + a_n$.

Opposite elements in \mathbb{Z}_{m+1}^n

A pair of elements (d, \bar{d}) of \mathbb{Z}_{m+1}^n are called opposite if one can be obtained from the other by inversions of component values, i.e., if $d = (d_1, \dots, d_n)$, then $\bar{d} = (m - d_1, \dots, m - d_n)$.

Boundary elements of $D_m(n)$

 $(d_1, \dots, d_n) \in D_m(n)$ is an upper boundary /lower boundary/ element of $D_m(n)$ if no $(a_1, \dots, a_n) \in \Xi_{m+1}^n$ with $(a_1, \dots, a_n) > (d_1, \dots, d_n)$ / with $(a_1, \dots, a_n) < (d_1, \dots, d_n)$ / belongs to $D_m(n)$.

Let \widehat{D}_{max} and \widecheck{D}_{min} denote the sets of upper and lower boundary elements of $D_m(n)$, respectively.

Interval/subgrid in \underline{Z}_{m+1}^n .

For a pair of elements d', d'', of Ξ_{m+1}^n with $d' \le d''$, E(d', d'') denotes the minimal subgrid/interval in Ξ_{m+1}^n spanned by these elements, i.e., $E(d', d'') = \{a \in \Xi_{m+1}^n | d' \le a \le d''\}$.

We will need also some preliminary results from [Sah, 2009]:

Lemma 1. $d = (d_1, \dots, d_i, \dots, d_n)$ belongs to $D_m(n)$ if and only if $\overline{d_i} = (d_1, \dots, m - d_i, \dots, d_n)$ belongs to $D_m(n)$, for arbitrary $i, 1 \le i \le n$.

Lemma 2. For each element $\hat{d} \in \hat{D}_{max}$ there exists its opposite element $\bar{\hat{d}} \in \check{D}_{min}$, and vice versa. Thus, $|\hat{D}_{max}| = |\check{D}_{min}|$.

Lemma 3.

For every element $\hat{d} = (\hat{d}_1, \dots, \hat{d}_n)$ of \widehat{D}_{max} $\hat{d}_i \ge m - \hat{d}_i$; and for every element $\check{d} = (\check{d}_1, \dots, \check{d}_n)$ of \check{D}_{min} $\check{d}_i \le m - \check{d}_i, i = 1, \dots, n$.

Let d_{min} denote the element of \hat{D}_{max} , which has the minimum rank among all elements of \hat{D}_{max} , $r(d_{min}) = \min_{d \in \hat{D}_{max}} r(d)$.

Lemma 4.

 d_{min} has components equal to m, if $m \leq 2^{n-1}$.

Theorem 1. $D_m(n) = \bigcup_{\widehat{D} \in \widehat{D}_{max}, \widecheck{D} \in \widecheck{D}_{min}} E(\widecheck{D}, \widehat{D})$, where $(\widehat{D}, \widecheck{D})$ are pairs of opposite elements.

It is worth noting the relation of \widehat{D}_{max} to the monotone Boolean functions defined on B^n . Each subset of vertices of B^n can be identified with the set of units of some Boolean function. In this manner, monotone Boolean functions represent a specific class of sets in B^n . Let M_m denote the class of *m*-sets in B^n represented by monotone Boolean functions with *m* units, and let $D_{M_m}(n)$ denote the class of corresponding associated vectors of partitions.

Theorem 2. $\widehat{D}_{max} \subseteq D_{M_m}(n)$.

III. NON-CONVEXITY OF $D_m(n)$ in Ξ_{m+1}^n

 Ξ_{m+1}^n is an *n*-dimensional integral polytope, - a convex polytope the vertices of which have all integer coordinates between 0 to *m*. Undefined terms can be found in [19-20].

By definition, the intervals $E(\tilde{D}, \hat{D})$ are convex subsets in \mathbb{Z}_{m+1}^{n} .

In this section, we prove that $D_m(n)$, being a union of convex sets $E(\check{D}, \widehat{D})$, is not convex in \mathbb{Z}_{m+1}^n .

Theorem 3. $D_m(n)$ is convex for $m = 1, 2^n - 1, 2^n$, and not convex for $1 < m < 2^n - 1$. *Proof.*

a) m = 1

There exists a unique monotone Boolean function with the single unit vertex $(1,1,\dots,1)$ of B^n . Therefore, \hat{D}_{max} consists of the single element (m,m,\dots,m) , and this is the only possible case that \hat{D}_{max} contains (m,m,\dots,m) . According to Lemma 2, \check{D}_{min} contains the single element $(0,0,\dots,0)$. Then, $D_m(n) = E((0,0,\dots,0),(m,m,\dots,m))$, and this coincides with \mathcal{E}_{m+1}^n .

There exists a unique monotone Boolean function, with the set of unit vertices coinciding with the whole B^n .

c) $m = 2^n - 1$

There exists a unique monotone Boolean function, the set of unit vertices of which coincides with $B^n \setminus \{(0,0,\dots,0)\}$.

Thus, in b) and c), \widehat{D}_{max} consists of a single element with components equal to 2^{n-1} , and this is the only possible case that \widehat{D}_{max} contains such an element. Hence, $D_m(n) = E((2^{n-1}, \dots, 2^{n-1}), (2^{n-1}, \dots, 2^{n-1}))$. Thus, in a)-c), $D_m(n)$ is convex.

d) $1 < m < 2^n - 1$.

Let $\widehat{D}_{max} = \{\widehat{D}_1, \cdots, \widehat{D}_r\}$, $\widecheck{D}_{min} = \{\widecheck{D}_1, \cdots, \widecheck{D}_r\}$; \widehat{D}_i , \widecheck{D}_i are opposite elements.

We prove that there exist $\check{D}_i \in \check{D}_{min}$ and $\hat{D}_j \in \hat{D}_{max}$, $i \neq j$ such that $E(\check{D}_i, \widehat{D}_j)$ is not contained in $D_m(n)$.

Firstly, we notice that $\check{D}_i \leq \widehat{D}_j$ for arbitrary *i*, *j*, since the components' values of \widehat{D}_j are greater or equal to the middle value [m/2], and the components' values of \check{D}_i - are less than or equal to the middle value [m/2] (according to Lemma 3). Consider the following cases:

Let \hat{D}_j be a minimal element of \hat{D}_{max} (assume that components are in decreasing order): $\hat{D}_j = (m, \hat{d}_2^j, \dots, \hat{d}_n^j)$ (according to Lemma 4, it has *m* valued component). Consider another element $\hat{D}_i = (\hat{d}_1^i, \hat{d}_2^i, \dots, \hat{d}_n^i)$ of \hat{D}_{max} , where $\hat{d}_1^i < m$. Such an element exists – it can simply be the vector obtained from \hat{D}_j by components permutation, taking into account also that all the components of \hat{D}_j cannot be equal to *m*.

Consider the opposite to \hat{D}_i element: $\check{D}_i = (m - \hat{d}_1^i, m - \hat{d}_2^i, \dots, m - \hat{d}_n^i)$, and replace the first component with m; we obtain $(m, m - \hat{d}_2^i, \dots, m - \hat{d}_n^i)$, which belongs to $E(\check{D}_i, \hat{D}_j)$, but does not belong to $D_m(n)$, since according to Lemma 1,

 (m, d_2^i, \dots, d_n^i) should belong to $D_m(n)$, which contradicts the fact that \hat{D}_i is an element of \hat{D}_{max} . 2) $m > 2^{n-1}$.

The proof is similar to the previous case, taking into account that all components of \widehat{D}_{max} cannot be equal to 2^{n-1} , besides the case of $m = 2^n - 1$. \Box

As an example, consider $D_4(3)$ in \mathbb{Z}_5^3 given in Fig.1. (0,2,2) and (3,3,3) belong to $D_4(3)$, and (0,2,2) < (3,3,3). However, the elements (0,3,2), (0,2,3), (0,3,3) of \mathbb{Z}_5^n , which are greater than (0,2,2), and less than (3,3,3), - do not belong to $D_4(3)$.

Fig. 1. Nonconvexity example

IV. THE SMALLEST CONVEX SET CONTAINING $D_m(n)$

In this section, we characterize the smallest convex subset of \mathcal{Z}_{m+1}^n , containing $D_m(n)$. We denote this set by $\mathcal{C}_{D_m(n)}$.

Fig. 2. Elements of $C_{D_4(3)}$ are colored (red and blue); elements of $D_4(3)$ are in red color.

Theorem 4. $C_{D_m(n)} = \bigcup_{i=1}^r \bigcup_{j=1}^r E(\widecheck{D}_i, \widehat{D}_j).$ Proof.

It is clear that $D_m(n) \subseteq \bigcup_{i=1}^r \bigcup_{j=1}^r E(\check{D}_i, \widehat{D}_j)$. Now we prove that $\bigcup_{i=1}^r \bigcup_{j=1}^r E(\check{D}_i, \widehat{D}_j)$ is a convex set in Ξ_{m+1}^n , and there is no smaller set in Ξ_{m+1}^n , that contains $D_m(n)$.

Firstly, we prove that $\bigcup_{i=1}^{r} \bigcup_{j=1}^{r} E(\check{D}_{i}, \widehat{D}_{j})$ is convex in \mathbb{Z}_{m+1}^{n} . Let $a, b \in \bigcup_{i=1}^{r} \bigcup_{j=1}^{r} E(\check{D}_{i}, \widehat{D}_{j})$, and a < b; we prove that the interval $[a, b] = \{c \in \mathbb{Z}_{m+1}^{n} | a \le c \le b\}$ belongs to $\bigcup_{i=1}^{r} \bigcup_{j=1}^{r} E(\check{D}_{i}, \widehat{D}_{j})$, as well. If a, b are boundary elements (upper or lower), or belong to some $E(\check{D}_{i}, \widehat{D}_{i})$, then the proof is evident. Suppose that *a*, *b* are not boundary elements, and $a \in E(D_i, D_i)$, $b \in E(D_j, D_j)$, $i \neq j$. In this case, every element *c* from [a, b] belongs to $E(D_i, D_j)$ /taking into account that $D_i \leq D_i$, for arbitrary $1 \leq i, j \leq r/$.

On the other hand, $\bigcup_{i=1}^{r} \bigcup_{j=1}^{r} E(\tilde{D}_{i}, \hat{D}_{j}) \subseteq C_{D_{m}(n)}$, - which implies that there is no smaller set in \mathbb{Z}_{m+1}^{n} , that contains $D_{m}(n)$. \Box

Fig.2 demonstrates $C_{D_4(3)}$ in Ξ_5^3 .

ACKNOWLEDGMENT

The work was partially supported by grant No21T-1B314 of the Science Committee of MESCS RA.

REFERENCES

[1] C. Berge, *Hypergraphs: Combinatorics of Finite Sets*, North-Holland, 1989.

[2] D. Billington, "Conditions for degree sequences to be realisable by 3uniform hypergraphs", *The Journal of Combinatorial Mathematics and Combinatorial Computing*, vol. 3, pp.71-91, 1988.

[3] D. Billington, "Lattices and Degree Sequences of Uniform Hypergraphs", *Ars Combinatoria*, 21A, pp. 9-19, 1986.

[4] N.L. Bhanu Murthy, M. K. Srinivasan, "The polytope of degree sequences of hypergraphs", *Linear Algebra and its Applications*, vol. 350, pp. 147–170, 2002.

[5] Ch.J. Colbourn, W.L. Kocay and D.R. Stinson, "Some NP-complete problems for hypergraph degree sequences", *Discrete Applied Mathematics*, vol. 14, pp. 239-254, 1986.

[6] W. Kocay and Ch. Li Pak, "On 3-hypergraphs with equal degree sequences", Ars Combinatoria, vol. 82, pp. 145–157, 2007.

[7] A. Deza, et al., "Hypergraphic degree sequences are hard", *Bulletin of the European Association for Theoretical Computer Science*, vol. 127, pp. 63–64, 2019.

[8] H. Sahakyan, L. Aslanyan and V. Ryazanov, "On the Hypercube Subset Partitioning Varieties", 2019 Computer Science and Information Technologies (CSIT), Yerevan, Armenia, pp. 83-88, 2019, doi: 10.1109/CSITechnol.2019.8895211.

[9] H. Sahakyan, "Numerical characterization of n-cube subset partitioning", Discrete Applied Mathematics, vol. 157, pp. 2191-2197, 2009.

[10] H. Sahakyan, "Essential points of the n-cube subset partitioning characterization", *Discrete Applied Mathematics*, vol. 163, part 2, pp. 205-213, 2014.

[11] H. Sahakyan, "On the set of simple hypergraph degree sequences", *Applied Mathematical Sciences*, vol. 9, no. 5, pp. 243-253, 2015.

[12] L. Aslanyan, H. Sahakyan, H. -D. Gronau and P. Wagner, "Constraint satisfaction problems on specific subsets of the n-dimensional unit cube", 2015 Computer Science and Information Technologies (CSIT), Yerevan, Armenia, pp. 47-52, 2015, doi: 10.1109/CSITechnol.2015.7358249.

[13] H. Sahakyan, "(0,1)-Matrices with different rows", 2013 Computer Science and Information Technologies (CSIT), Yerevan, Armenia, pp. 1-7, 2013, doi: 10.1109/CSITechnol.2013.6710342.

[14] H. Sahakyan, L. Aslanyan, "Linear program form for ray different discrete tomography", *Information Technologies and Knowledge*, vol. 4, no 1, pp. 41-50, 2010.

[15] M. Koren, "Extreme degree sequences of simple graphs", J. Combinatorial Theory, Ser. B, vol. 15, pp. 213–224, 1973.

[16] C. Klivans and V. Reiner, "Shifted set families, degree sequences, and plethysm", *Electronic. Journal of Combinatorics*, vol. 15, 2008, doi: https://doi.org/10.37236/738.

[17] R. Ini Liu, "Nonconvexity of the set of hypergraph degree sequences", *Electronic Journal of Combinatorics*, vol. 20(1), #P21, 2013.

[18] H. Sahakyan, L. Aslanyan, "Convexity related issues for the set of hypergraphic sequences", *Information Theories and Applications*, vol.23, no 1, pp. 29-47, 2016.

[19] G. Birkhoff, *Lattice Theory*, American Mathematical Society Colloquium Publications, vol. XXV. American Mathematical Society, 1948.
[20] H. G. Eggleston, *Chapter 1 – General properties of convex sets*, pp. 1-32, Publisher: Cambridge University Press, 1958, Online Publication, 2010, DOI: http://dx.doi.org/10.1017/CBO9780511566172.002.