On Nonconvexity of the Set of Hypergraphic Sequences

Hasmik Sahakyan
Institute for Informatics and
Automation Problems of NAS RA
Yerevan, Armenia
e-mail: hsahakyan@sci.am

Abstract

In this paper, we prove that $D_{m}(n)$, the set of hypergraphic sequences of all simple hypergraphs ($[n], E$), where $[n]=\{1,2, \cdots, n\}$, and $|E|=m$; being a subset of n dimensional $m+1$-valued grid Ξ_{m+1}^{n}, is not a convex set in Ξ_{m+1}^{n}; also, we characterize the smallest convex set containing $D_{m}(n)$.

Keywords-Hypergraphic sequences, non-convexity

I. INTRODUCTION

The existence of simple uniform hypergraphs with a given degree sequence was a long-standing open problem ([1-6]); in 2018, the NP-completeness of the problem was proved [7]. The existence of simple hypergraphs with a given degree sequence (without given sizes of hyperedges) is not easier than the case of uniform hypergraphs ([8]). Characterization of $D_{m}(n)$, - the set of all degree sequences of simple hypergraphs with n vertices and m hyperedges, is investigated in [9-12]. The problem has its interpretation in terms of multidimensional binary cubes; it is also known as a special case in discrete tomography problems, when an additional constraint/requirement - non-repetition of rows, is imposed [13-14]. Structures, properties, and several related results were also obtained for $D_{m}(n)$. Convex hull of degree sequences of k-uniform hypergraphs was investigated in [4], [15-17]. In [16], it is verified computationally that the set of degree sequences for k-uniform hypergraphs is the intersection of a lattice and a convex polytope for $k=3$ and $n \leq 8$. [17] shows that this does not hold for $k \geq 3$ and $n \geq$ $k+13$.

In this paper, we prove that $D_{m}(n)$, being a subset of the n-dimensional $m+1$-valued grid Ξ_{m+1}^{n}, is not a convex set in Ξ_{m+1}^{n}; also, we characterize the smallest convex set containing $D_{m}(n)$. This paper is an extended version of [18], where some preliminary results were presented without proofs.

The rest of the paper is organized as follows. Section 2 presents necessary definitions, preliminaries, and basic concepts. Main results are given in Section 3.

II. Preliminaries

A. Hypergraph degree sequences

A hypergraph H is a pair (V, E), where V is the vertex set of H, and E, the set of hyperedges, is a collection of non-empty subsets of V. The degree of a vertex v of H, denoted by $d(v)$, is the number of hyperedges in H containing v. A hypergraph H is simple if it has no repeated hyperedges. A hypergraph H is r-uniform if all hyperedges contain r-vertices.
Let $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\} . D(H)=\left(d\left(v_{1}\right), d\left(v_{2}\right), \cdots, d\left(v_{n}\right)\right)$ is the degree sequence of hypergraph H. A sequence $d=$ ($d_{1}, d_{2}, \cdots, d_{n}$) is hypergraphic if there is a simple hypergraph H with the degree sequence d. For a given $m, 0<m \leq 2^{n}$, let $H_{m}(n)$ denote the set of all simple hypergraphs ($[n], E$), where $[n]=\{1,2, \cdots, n\}$, and $|E|=m$; and $D_{m}(n)$ denote the set of all hypergraphic sequences of hypergraphs in $H_{m}(n)$.

B. Monotone Boolean functions

Let $B^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x_{i} \in\{0,1\}, i=1, \cdots, n\right\}$ denote the set of vertices of the n-dimensional binary (unit) cube.

We define also partition/splitting of B^{n} into two ($n-1$)dimensional sub-cubes according to the values of the binary variables; for arbitrary x_{i} :

$$
\begin{aligned}
& B_{x_{i}=0}^{n-1}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in B^{n} \mid x_{i}=0\right\} \text { and } \\
& B_{x_{i}=1}^{n-1}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in B^{n} \mid x_{i}=1\right\} .
\end{aligned}
$$

Any subset $\mathcal{M} \subseteq B^{n}$ will be partitioned into

$$
\mathcal{M}_{x_{i}=1} \subseteq B_{x_{i}=1}^{n-1} \text { and } \mathcal{M}_{x_{i}=0} \subseteq E_{x_{i}=0}^{n-1} .
$$

An integer vector $S=\left(s_{1}, \cdots, s_{n}\right)$ is called associated vector of partitions of the set $\mathcal{M} \subseteq E^{n}$, if $s_{i}=\left|\mathcal{M}_{x_{i}=1}\right|, i=$ $1, \cdots, n$.
Boolean function $f: B^{n} \rightarrow\{0,1\}$ is called monotone if for every two vertices $\alpha, \beta \in B^{n}$, if $\alpha<\beta$ then $f(\alpha) \leq f(\beta)$. Vertices of B^{n}, where f takes the value " 1 " are called units or true points of the function; vertices, where f takes the value " 0 " are called zeros or false points of the function.

C. Characterization of $D_{m}(n)$

Clearly, every integer sequence of length n with all component values between 0 and m, can serve potentially as
a degree sequence of some hypergraph with the vertex set $[n$] and with m hyperedges. Thus, $D_{m}(n) \subseteq\left\{\left(a_{1}, \cdots, a_{n}\right) \mid 0 \leq\right.$ $\left.a_{i} \leq m\right\}$; we denote this set by Ξ_{m+1}^{n}. We place a componentwise partial order on $\Xi_{m+1}^{n}:\left(a_{1}, \cdots, a_{n}\right) \preccurlyeq\left(b_{1}, \cdots, b_{n}\right)$ if and only if $a_{i} \leq b_{i}$ for all i. $\left(\Xi_{m+1}^{n}, \preccurlyeq\right)$ is a partial ordered set for which the rank of an element is given by $r\left(a_{1}, \cdots, a_{n}\right)=a_{1}+$ $\cdots+a_{n}$.

Opposite elements in Ξ_{m+1}^{n}

A pair of elements (d, \bar{d}) of Ξ_{m+1}^{n} are called opposite if one can be obtained from the other by inversions of component values, i.e., if $d=\left(d_{1}, \cdots, d_{n}\right)$, then $\bar{d}=\left(m-d_{1}, \cdots, m-\right.$ d_{n}).
Boundary elements of $D_{m}(n)$
$\left(d_{1}, \cdots, d_{n}\right) \in D_{m}(n)$ is an upper boundary /lower boundary/ element of $D_{m}(n)$ if no $\left(a_{1}, \cdots, a_{n}\right) \in \Xi_{m+1}^{n}$ with $\left(a_{1}, \cdots, a_{n}\right)>\left(d_{1}, \cdots, d_{n}\right) /$ with $\left(a_{1}, \cdots, a_{n}\right)<\left(d_{1}, \cdots, d_{n}\right) /$ belongs to $D_{m}(n)$.
Let $\widehat{D}_{\text {max }}$ and $\widetilde{D}_{\text {min }}$ denote the sets of upper and lower boundary elements of $D_{m}(n)$, respectively.
Interval/subgrid in Ξ_{m+1}^{n}.
For a pair of elements $d^{\prime}, d^{\prime \prime}$, of Ξ_{m+1}^{n} with $d^{\prime} \leq d^{\prime \prime}$, $E\left(d^{\prime}, d^{\prime \prime}\right)$ denotes the minimal subgrid/interval in Ξ_{m+1}^{n} spanned by these elements, i.e., $E\left(d^{\prime}, d^{\prime \prime}\right)=\left\{a \in \Xi_{m+1}^{n} \mid d^{\prime} \leq\right.$ $\left.a \leq d^{\prime \prime}\right\}$.

We will need also some preliminary results from [Sah, 2009]:
Lemma 1. $d=\left(d_{1}, \cdots, d_{i}, \cdots, d_{n}\right)$ belongs to $D_{m}(n)$ if and only if $\bar{d}_{i}=\left(d_{1}, \cdots, m-d_{i}, \cdots, d_{n}\right)$ belongs to $D_{m}(n)$, for arbitrary $i, 1 \leq i \leq n$.
Lemma 2. For each element $\hat{d} \in \widehat{D}_{\max }$ there exists its opposite element $\overline{\hat{d}} \in \breve{D}_{\text {min }}$, and vice versa. Thus, $\left|\widehat{D}_{\text {max }}\right|=$ $\left|\widetilde{D}_{\text {min }}\right|$.

Lemma 3.

For every element $\hat{d}=\left(\hat{d}_{1}, \cdots, \hat{d}_{n}\right)$ of $\widehat{D}_{\max } \hat{d}_{i} \geq m-\hat{d}_{i}$; and for every element $\check{d}=\left(\check{d}_{1}, \cdots, \check{d}_{n}\right)$ of $\breve{D}_{\min } \check{d}_{i} \leq m-$ $\check{d}_{i}, i=1, \cdots, n$.

Let $d_{\text {min }}$ denote the element of $\widehat{D}_{\text {max }}$, which has the minimum rank among all elements of $\widehat{D}_{\max }, r\left(d_{\text {min }}\right)=$ $\min _{d \in \bar{D}_{m}} r(d)$.
$d \in \bar{D}_{\text {max }}$
Lemma 4.
$d_{\text {min }}$ has components equal to m, if $m \leq 2^{n-1}$.
Theorem 1. $D_{m}(n)=\bigcup_{\widehat{D} \in \widehat{D} \text { max }, \breve{D} \in \breve{D}_{\text {min }}} E(\breve{D}, \widehat{D})$, where (\widehat{D}, \breve{D}) are pairs of opposite elements.

It is worth noting the relation of $\widehat{D}_{\max }$ to the monotone Boolean functions defined on B^{n}. Each subset of vertices of B^{n} can be identified with the set of units of some Boolean function. In this manner, monotone Boolean functions represent a specific class of sets in B^{n}. Let M_{m} denote the class of m-sets in B^{n} represented by monotone Boolean functions with m units, and let $D_{M_{m}}(n)$ denote the class of corresponding associated vectors of partitions.

Theorem 2.

$\widehat{D}_{\text {max }} \subseteq D_{M_{m}}(n)$.

III. NON-CONVEXITY OF $D_{m}(n)$ in Ξ_{m+1}^{n}

Ξ_{m+1}^{n} is an n-dimensional integral polytope, - a convex polytope the vertices of which have all integer coordinates between 0 to m. Undefined terms can be found in [19-20].
By definition, the intervals $E(\breve{D}, \widehat{D})$ are convex subsets in E_{m+1}^{n}.
In this section, we prove that $D_{m}(n)$, being a union of convex sets $E(\breve{D}, \widehat{D})$, is not convex in Ξ_{m+1}^{n}.

Theorem 3. $D_{m}(n)$ is convex for $m=1,2^{n}-1,2^{n}$, and not convex for $1<m<2^{n}-1$.
Proof.

$$
\text { a) } m=1
$$

There exists a unique monotone Boolean function with the single unit vertex $(1,1, \cdots, 1)$ of B^{n}. Therefore, $\widehat{D}_{\max }$ consists of the single element (m, m, \cdots, m), and this is the only possible case that $\widehat{D}_{\max }$ contains (m, m, \cdots, m). According to Lemma 2, $\breve{D}_{\text {min }}$ contains the single element $(0,0, \cdots, 0)$. Then, $\quad D_{m}(n)=E((0,0, \cdots, 0),(m, m, \cdots, m))$, and this coincides with Ξ_{m+1}^{n}.
b) $m=2^{n}$

There exists a unique monotone Boolean function, with the set of unit vertices coinciding with the whole B^{n}.
c) $m=2^{n}-1$

There exists a unique monotone Boolean function, the set of unit vertices of which coincides with $B^{n} \backslash\{(0,0, \cdots, 0)\}$.

Thus, in b) and c), $\widehat{D}_{\text {max }}$ consists of a single element with components equal to 2^{n-1}, and this is the only possible case that $\widehat{D}_{\text {max }}$ contains such an element. Hence, $D_{m}(n)=$ $E\left(\left(2^{n-1}, \cdots, 2^{n-1}\right),\left(2^{n-1}, \cdots, 2^{n-1}\right)\right)$.
Thus, in a)-c), $D_{m}(n)$ is convex.

$$
\text { d) } 1<m<2^{n}-1
$$

Let $\widehat{D}_{\text {max }}=\left\{\widehat{D}_{1}, \cdots, \widehat{D}_{r}\right\}, \breve{D}_{\text {min }}=\left\{\breve{D}_{1}, \cdots, \breve{D}_{r}\right\} ; \widehat{D}_{i}, \breve{D}_{i}$ are opposite elements.
We prove that there exist $\breve{D}_{i} \in \breve{D}_{\text {min }}$ and $\widehat{D}_{j} \in \widehat{D}_{\text {max }}, i \neq j$ such that $E\left(\widetilde{D}_{i}, \widehat{D}_{j}\right)$ is not contained in $D_{m}(n)$.
Firstly, we notice that $\breve{D}_{i} \leq \widehat{D}_{j}$ for arbitrary i, j, since the components' values of \widehat{D}_{j} are greater or equal to the middle value $\lceil m / 2\rceil$, and the components' values of \widetilde{D}_{i} - are less than or equal to the middle value $\lfloor m / 2\rfloor$ (according to Lemma 3). Consider the following cases:

1) $m \leq 2^{n-1}$.

Let \widehat{D}_{j} be a minimal element of $\widehat{D}_{\max }$ (assume that components are in decreasing order): $\widehat{D}_{j}=\left(m, \hat{d}_{2}^{j}, \cdots, \hat{d}_{n}^{j}\right)$ (according to Lemma 4, it has m valued component). Consider another element $\widehat{D}_{i}=\left(\hat{d}_{1}^{i}, \hat{d}_{2}^{i}, \cdots, \hat{d}_{n}^{i}\right)$ of $\widehat{D}_{\text {max }}$, where $\hat{d}_{1}^{i}<m$. Such an element exists - it can simply be the vector obtained from \widehat{D}_{j} by components permutation, taking into account also that all the components of \widehat{D}_{j} cannot be equal to m.
Consider the opposite to \widehat{D}_{i} element: $\breve{D}_{i}=\left(m-\hat{d}_{1}^{i}, m-\right.$ $\left.\hat{d}_{2}^{i}, \cdots, m-\hat{d}_{n}^{i}\right)$, and replace the first component with m; we obtain $\left(m, m-\hat{d}_{2}^{i}, \cdots, m-\hat{d}_{n}^{i}\right)$, which belongs to $E\left(\widetilde{D}_{i}, \widehat{D}_{j}\right)$, but does not belong to $D_{m}(n)$, since according to Lemma 1 ,
($m, \hat{d}_{2}^{i}, \cdots, \hat{d}_{n}^{i}$) should belong to $D_{m}(n)$, which contradicts the fact that \widehat{D}_{i} is an element of $\widehat{D}_{\max }$.
2) $m>2^{n-1}$.

The proof is similar to the previous case, taking into account that all components of $\widehat{D}_{\max }$ cannot be equal to 2^{n-1}, besides the case of $m=2^{n}-1$. \square
As an example, consider $D_{4}(3)$ in Ξ_{5}^{3} given in Fig.1. $(0,2,2)$ and $(3,3,3)$ belong to $D_{4}(3)$, and $(0,2,2)<(3,3,3)$. However, the elements $(0,3,2),(0,2,3),(0,3,3)$ of $\Xi 3_{5}^{n}$, which are greater than $(0,2,2)$, and less than $(3,3,3)$, - do not belong to D_{4} (3).

Fig. 1. Nonconvexity example

IV. The smallest convex set containing $D_{m}(n)$

In this section, we characterize the smallest convex subset of Ξ_{m+1}^{n}, containing $D_{m}(n)$. We denote this set by $C_{D_{m}(n)}$.

Fig. 2. Elements of $C_{D_{4}(3)}$ are colored (red and blue); elements of $D_{4}(3)$ are in red color.

Theorem 4. $C_{D_{m}(n)}=\bigcup_{i=1}^{r} \bigcup_{j=1}^{r} E\left(\widetilde{D}_{i}, \widehat{D}_{j}\right)$.
Proof.
It is clear that $D_{m}(n) \subseteq \bigcup_{i=1}^{r} \bigcup_{j=1}^{r} E\left(\breve{D}_{i}, \widehat{D}_{j}\right)$. Now we prove that $\bigcup_{i=1}^{r} \cup_{j=1}^{r} E\left(\breve{D}_{i}, \widehat{D}_{j}\right)$ is a convex set in Ξ_{m+1}^{n}, and there is no smaller set in Ξ_{m+1}^{n}, that contains $D_{m}(n)$.
Firstly, we prove that $\bigcup_{i=1}^{r} \bigcup_{j=1}^{r} E\left(\breve{D}_{i}, \widehat{D}_{j}\right)$ is convex in Ξ_{m+1}^{n}. Let $a, b \in \cup_{i=1}^{r} \cup_{j=1}^{r} E\left(\breve{D}_{i}, \widehat{D}_{j}\right)$, and $a<b$; we prove that the interval $[a, b]=\left\{c \in \Xi_{m+1}^{n} \mid a \leq c \leq b\right\} \quad$ belongs to $\bigcup_{i=1}^{r} \bigcup_{j=1}^{r} E\left(\breve{D}_{i}, \widehat{D}_{j}\right)$, as well. If a, b are boundary elements (upper or lower), or belong to some $E\left(\breve{D}_{i}, \widehat{D}_{i}\right)$, then the proof
is evident. Suppose that a, b are not boundary elements, and $a \in E\left(\breve{D}_{i}, \widehat{D}_{i}\right), b \in E\left(\widetilde{D}_{j}, \widehat{D}_{j}\right), i \neq j$. In this case, every element c from $[a, b]$ belongs to $E\left(\breve{D}_{i}, \widehat{D}_{j}\right)$ /taking into account that $\breve{D}_{i} \leq \widehat{D}_{j}$, for arbitrary $1 \leq i, j \leq r /$.
On the other hand, $\bigcup_{i=1}^{r} \bigcup_{j=1}^{r} E\left(\widetilde{D}_{i}, \widehat{D}_{j}\right) \subseteq C_{D_{m}(n)}$, - which implies that there is no smaller set in Ξ_{m+1}^{n}, that contains $D_{m}(n)$.
Fig. 2 demonstrates $C_{D_{4}(3)}$ in Ξ_{5}^{3}.

Acknowledgment

The work was partially supported by grant No21T-1B314 of the Science Committee of MESCS RA.

References

[1] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland, 1989.
[2] D. Billington, "Conditions for degree sequences to be realisable by 3uniform hypergraphs", The Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 3, pp.71-91, 1988.
[3] D. Billington, "Lattices and Degree Sequences of Uniform Hypergraphs", Ars Combinatoria, 21A, pp. 9-19, 1986.
[4] N.L. Bhanu Murthy, M. K. Srinivasan, "The polytope of degree sequences of hypergraphs", Linear Algebra and its Applications, vol. 350, pp. 147-170, 2002.
[5] Ch.J. Colbourn, W.L. Kocay and D.R. Stinson, "Some NP-complete problems for hypergraph degree sequences", Discrete Applied Mathematics, vol. 14, pp. 239-254, 1986.
[6] W. Kocay and Ch. Li Pak, "On 3-hypergraphs with equal degree sequences", Ars Combinatoria, vol. 82, pp. 145-157, 2007.
[7] A. Deza, et al., "Hypergraphic degree sequences are hard", Bulletin of the European Association for Theoretical Computer Science, vol. 127, pp. 63 64, 2019.
[8] H. Sahakyan, L. Aslanyan and V. Ryazanov, "On the Hypercube Subset Partitioning Varieties", 2019 Computer Science and Information Technologies (CSIT), Yerevan, Armenia, pp. 83-88, 2019, doi: 10.1109/CSITechnol.2019.8895211.
[9] H. Sahakyan, "Numerical characterization of n-cube subset partitioning", Discrete Applied Mathematics, vol. 157, pp. 2191-2197, 2009.
[10] H. Sahakyan, "Essential points of the n-cube subset partitioning characterization", Discrete Applied Mathematics, vol. 163, part 2, pp. 205213, 2014.
[11] H. Sahakyan, "On the set of simple hypergraph degree sequences", Applied Mathematical Sciences, vol. 9, no. 5, pp. 243-253, 2015.
[12] L. Aslanyan, H. Sahakyan, H. -D. Gronau and P. Wagner, "Constraint satisfaction problems on specific subsets of the n-dimensional unit cube", 2015 Computer Science and Information Technologies (CSIT), Yerevan, Armenia, pp. 47-52, 2015, doi: 10.1109/CSITechnol.2015.7358249.
[13] H. Sahakyan, "(0,1)-Matrices with different rows", 2013 Computer Science and Information Technologies (CSIT), Yerevan, Armenia, pp. 1-7, 2013, doi: 10.1109/CSITechnol.2013.6710342.
[14] H. Sahakyan, L. Aslanyan, "Linear program form for ray different discrete tomography", Information Technologies and Knowledge, vol. 4, no 1, pp. 41-50, 2010.
[15] M. Koren, "Extreme degree sequences of simple graphs", J. Combinatorial Theory, Ser. B, vol. 15, pp. 213-224, 1973.
[16] C. Klivans and V. Reiner, "Shifted set families, degree sequences, and plethysm", Electronic. Journal of Combinatorics, vol. 15, 2008, doi: https://doi.org/10.37236/738.
[17] R. Ini Liu, "Nonconvexity of the set of hypergraph degree sequences", Electronic Journal of Combinatorics, vol. 20(1), \#P21, 2013.
[18] H. Sahakyan, L. Aslanyan, "Convexity related issues for the set of hypergraphic sequences", Information Theories and Applications, vol.23, no 1, pp. 29-47, 2016.
[19] G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, vol. XXV. American Mathematical Society, 1948. [20] H. G. Eggleston, Chapter 1 - General properties of convex sets, pp. 132, Publisher: Cambridge University Press, 1958, Online Publication, 2010, DOI: http://dx.doi.org/10.1017/CBO9780511566172.002.

