Maximal k-Sum-Free Collections in an Abelian Group

Vahe Sargsyan

Institute for Informatics and Automation Problems of the National Academy of Sciences of the Republic of Armenia Yerevan, Armenia e-mail: vahe sargsyan@ymail.com, vahe sargsyan@iiap.sci.am

Abstract—Let G be an Abelian group of order n, let $k \ge 2$ be an integer, and A_1, \ldots, A_k be non-empty subsets of G. The collection (A_1, \ldots, A_k) is called k-sum-free (abbreviated k-SFC), if the equation $x_1 + \cdots + x_k = 0$ has no solutions in the collection (A_1, \ldots, A_k) , where $x_1 \in A_1, \ldots, x_k \in A_k$. The family of k-SFC in G will be denoted by $SFC_k(G)$. The collection $(A_1, \ldots, A_k) \in SFC_k(G)$ is called maximal by capacity if it is maximal by the sum of $|A_i| + \cdots + |A_k|$, and maximal by inclusion if for any $i \in \{1, \ldots, k\}$ and $x \in G \setminus A_i$, the collection $(A_1, \ldots, A_{i-1}, A_i \cup \{x\}, A_{i+1}, \ldots, A_k) \notin SFC_k(G)$. Suppose $\varrho_k(G) = |A_i| + \cdots + |A_k|$. In this work, we study the problem of the maximal value of $\varrho_k(G)$. In particular, the maximal value of $\varrho_k(Z_d)$ for the cyclic group Z_d is determined. Upper and lower bounds for $\varrho_k(G)$ are obtained for the Abelian group G. The structure of maximal k-sum-free set by capacity (by inclusion) is described for an arbitrary cyclic group.

Keywords— Collection, sum-free, cyclic group, non-trivial subgroup, canonical homomorphism, coset.

I. INTRODUCTION

Let G be an Abelian group of order n, let $k \ge 2$ be an integer, and A_1, \ldots, A_k be non-empty subsets of G. The collection (A_1, \ldots, A_k) is called a k-sum-free (abbreviated k-SFC) if there is no such a collection as

$$(a_1,\ldots,a_k) \in A_1 \times \cdots \times A_k,$$

being the solution of the equation

$$x_1 + \dots + x_k = 0. \tag{1}$$

The family of k-SFC in G will be denoted by $SFC_k(G)$. Suppose

$$\varrho_k(G) = \max_{(A_1,\dots,A_k)\in SFC_k(G)} |A_1| + \dots + |A_k|.$$

Let (A_1, \ldots, A_k) be a k-sum-free collection in the group G. The collection (A_1, \ldots, A_k) is called maximal by capacity if it is maximal by $\varrho_k(G)$, and maximal by inclusion if for any $i \in \{1, \ldots, k\}$ and $x \in G \setminus A_i$, the collection

$$(A_1, \ldots, A_{i-1}, A_i \cup \{x\}, A_{i+1}, \ldots, A_k)$$

is not k-sum-free in the group G.

In this article, the following issues are considered. **Problem 1.** Definition of $\rho_k(G)$.

Problem 2. The structure definition of maximal k-SFC by capacity (by inclusion).

II. DEFINITION AND AUXILIARY STATEMENTS

Let $A_1, ..., A_k$ be non-empty subsets of the group G. Suppose

$$A_1 + \dots + A_k = \{x_1 + \dots + x_k \mid x_1 \in A_1, \dots, x_k \in A_k\}.$$

If $(A_1, \ldots, A_k) \in SFC_k(G)$, then this is equivalent to the fact that $0 \notin A_1 + \cdots + A_k$.

Let G be an Abelian group and let H be a subgroup of G. Then, through $\phi_{G,G/H}$ the ultimate canonical homomorphism $\phi_{G,G/H}: G \to G/H$, and for any subset A of the group G, we denote by A/H the subset $\phi_{G,G/H}(A)$ of the group factor G/H.

Lemma 1: Let H be a subgroup of the Abelian group G. If $(A_1, \ldots, A_k) \in SFC_k(G/H)$, then $(\phi_{G,G/H}^{-1}(A_1), \ldots, \phi_{G,G/H}^{-1}(A_k)) \in SFC_k(G)$. Moreover, if $(\phi_{G,G/H}^{-1}(A_1), \ldots, \phi_{G,G/H}^{-1}(A_k))$ is a maximal (by inclusion) k-sum-free collection in the group G, then $((A_1, \ldots, A_k)$ is a maximal (by inclusion) k-sum-free collection in the group factor G/H.

Definition 1: Let A be a non-empty subset of the group G. The largest subgroup H(A) of the group G such that A + H(A) = A, is called a stabilizer of the set A.

Let G be an Abelian group, let $k \ge 2$ be an integer, and A_1, \ldots, A_k be non-empty subsets of G. Here $H_G = H_G(A_1 + \cdots + A_k)$ denotes the stabilizer of the set $A_1 + \cdots + A_k$

$$A_1 + \dots + A_k + H_G = A_1 + \dots + A_k.$$
 (2)

Lemma 2: If (A_1, \ldots, A_k) is a maximal k-sum-free collection by inclusion in the group G, then the set $(A_1 + H_G, \ldots, A_k + H_G)$ is also a maximal k-sum-free set by inclusion in the group G.

Lemma 3: If (A_1, \ldots, A_k) is a maximal k-sum-free collection by inclusion in the group G, then for any $i \in \{1, \ldots, k\}$ the collection $(A_1, \ldots, A_{i-1}, A_i + H_G, A_{i+1}, \ldots, A_k)$ is also a maximal k-sum-free collection by inclusion in the group G.

Lemma 4: If (A_1, \ldots, A_k) is a maximal k-sum-free collection by inclusion in the group G, then $A_i = A_i + H_G$, and hence, A_i represents a combination of several adjacent classes of the subgroup H_G , which in turn means that $|A_i|$ is divided into $|H_G|$, for all $i = 1, \ldots, k$.

Lemma 5: If (A_1, \ldots, A_k) is a maximal k-sum-free collection by inclusion in the group G, then the set $(A_1/H_G, \ldots, A_k/H_G)$ is also a maximal k-sum-free collection by inclusion in the group G/H_G .

Lemma 6: Let G be an Abelian group, let (A_1, \ldots, A_k) be a maximal k-sum-free collection by inclusion in the group G, and H_G be a stabilizer of the set $A_1 + \cdots + A_k$, and H_{G/H_G} be a stabilizer of the set $A_1/H_G + \cdots + A_k/H_G$. Then $H_{G/H_G} = H_G/H_G = \{0\} \in G/H_G$.

Lemma 7: If (A_1, \ldots, A_k) is a k-sum-free collection in the Abelian group G, then for any $2 \leq m \leq k-1$ $(A_1, \ldots, A_{m-1}, A_m + \cdots + A_k)$ it is an m-sum-free collection in the Abelian group G.

III. DEFINITION OF $\rho_k(G)$

In 1813, Cauchy [1] proved the first result of a theory called *Additive number theory*. The Additive number theory is the main tool for studying **Problem 1** and **Problem 2**. Cauchy's result, which Davenport [2], [3] revised in 1935, is called the Cauchy–Davenport theorem. Applying this theorem we get the exact value $\rho_k(Z_p)$ for a cyclic group of a simple order.

Theorem 1: For any prime number p the following equality is true

$$\varrho_k(Z_p) = p + k - 2$$

In 1953, Kneser [4], [5] generalized Cauchy–Davenport's result for any Abelian group. Applying Kneser's theorem we obtain lower and upper bounds for any Abelian groups.

Theorem 2: Let G be an Abelian group of order n and exponent ν . Then

$$n + \frac{n}{p_1}(k-2) = \max_{d|\nu} \left(\frac{n}{d}(d+k-2)\right) \leqslant$$
$$\leqslant \varrho_k(G) \leqslant$$
$$\leqslant \max_{d|n} \left(\frac{n}{d}(d+k-2)\right) = n + \frac{n}{p_2}(k-2),$$

where p_1 is the smallest prime divisor of ν , and p_2 is the smallest prime divisor of n.

There exist premises to imply that the following statement is true.

Theorem 3 (Hypothesis): Let G be an Abelian group of order n and exponent ν . Then

$$\varrho_k(G) = n + \frac{n}{p}(k-2),$$

where p is the smallest prime divisor of ν .

Theorem 4: For any n, the following equality is true:

$$\varrho_k(Z_n) = n + \frac{n}{p} (k-2),$$

where p is the smallest prime divisor of n.

Theorem 5: Let G be an Abelian group of order n and exponent ν . Then

$$\varrho_k(G) \ge \max_{d|\nu} \left(\frac{n}{d}\varrho_k(Z_d)\right)$$

IV. ON THE STRUCTURE OF A MAXIMAL BY CAPACITY k-Sum-Free Collection in a Cyclic Group

Let A be a subset of the Abelian group G, then denote by \overline{A} as a complement of the subset A in the Abelian group G, that is, $\overline{A} = G \setminus A$, and for any natural number m denote $m \star A = \{ma \mid a \in A\}$ and $m \star A$ will be called an extension of the set A. Let's define $\operatorname{ord}(A) = \{\operatorname{ord}(a) \mid a \in A\}$, where $\operatorname{ord}(a)$ is the order of the element a.

Lemma 8: Let (A_1, \ldots, A_k) be a k-sum-free collection in the Abelian group G. Then for any $m \notin \operatorname{ord}(A_1 + \cdots + A_k)$ the collection $(m \star A_1, \ldots, m \star A_k)$ is k-sum-free in the Abelian group G.

Remark 1: Note that for any $A \subseteq Z_p$, where p is a prime number, $\operatorname{ord}(A) = \{p\}$.

Definition 2: The arithmetic progression of P in the Abelian group G is such an entity that there exist two elements $a, d \in G$, and a non-negative integer s, such that

$$P = \{a + jd \mid 1 \leq j \leq s\}.$$

In 1956, Vosper [6], [7] considered the Cauchy–Davenport result in the case of equality. Vosper's theorem will mainly help in the study of **Problem 2**.

As a result, we got the following result:

Lemma 9: Let (A_1, \ldots, A_k) be a k-sum-free collection in the cyclic group of the prime order Z_p such that the difference of all arithmetic progressions in $\{A_1, \ldots, A_k\}$ is equal to d. Let dm(mod p) = 1. Then $(m \star A_1, \ldots, m \star A_k)$ is a ksum-free collection in Z_p , and the difference of all arithmetic progressions in $\{m \star A_1, \ldots, m \star A_k\}$ is equal to 1.

Lemma 10: If (A_1, \ldots, A_k) is a maximal k-sum-free collection by capacity in the cyclic group of prime order Z_p , then for any $2 \le m \le k-1$ $(A_1, \ldots, A_{m-1}, A_m + \cdots + A_k)$ it is a maximal m-sum-free collection by capacity in Z_p .

Theorem 6: Let $k \ge 2$, and A_1, \ldots, A_k be non-empty subsets of the cyclic group Z_p of the prime order p, such that $A_1 + \cdots + A_k \ne Z_p$. Then $|A_1 + \cdots + A_k| = |A_1| + \cdots +$ $|A_k| - (k-1)$, if and only if for each set A_{k-i} , $i = 0, \ldots, k-1$, there occurs at least one of the following three conditions:

- (i) $\min(|A_1 + \dots + A_{k-i-1}|, |A_{k-i}|) = 1;$
- (ii) if $|A_1 + \cdots + A_{k-i}| = p A_{k-i-1}$, then $A_{k-i} = \frac{c - (A_1 + \cdots + A_{k-i-1})}{(A_1 + \cdots + A_{k-i-1})}$, where $\{c\} = \overline{(A_1 + \cdots + A_{k-i})};$
- (iii) $A_1 + \cdots + A_{k-i-1}, A_{k-i}$ are arithmetic progressions with the same difference.

Remark 2: Since the permutation keeps the collection sumfree, that is, if the collection (A_1, \ldots, A_k) is k-sum-free then the collection $(A_{i_1}, \ldots, A_{i_k})$ is also k-sum-free where (i_1, \ldots, i_k) is an arbitrary permutation of the set $(1, \ldots, k)$, then the sequence of choice of sets can be arbitrary.

Remark 3: All arithmetic progressions in (A_1, \ldots, A_k) have the same difference.

The next theorem describes the structure of each maximal k-sum-free collection by capacity (with accuracy up to isomorphism) in the cyclic group of prime order.

Theorem 7: Let $k \ge 2$, let Z_p be a cyclic group of prime order, and let A_1, \ldots, A_k be a maximal k-sum-free collection by capacity in Z_p . Then, each entity of the set with accuracy up to isomorphism is one of the following:

(i) $|A_i| = 1;$

(ii) $A_i = -(A_1 + \dots + A_{i-1} + A_{i+1} + \dots + A_k);$

(iii) A_i is an arithmetic progression with difference 1; where i = 1, ..., k.

Theorem 8: Let $k \ge 2$, and p be the smallest prime divisor of a natural number n, and H be a subgroup of the group Z_n of order n/p, and (A_1, \ldots, A_k) be a maximal k-sum-free collection by capacity in Z_n . Then, each entity of this set, with accuracy up to isomorphism, is one of the following:

- (i) $|A_i| = n/p$, that is, A_i is the coset of Z_n by the subgroup H;
- (ii) A_i is a union of cosets Z_n by the subgroup H such that for sets of representatives of cosets as subsets of the cyclic group Z_p , the following relation is correct: $A_i/H = -(A_1/H + ... + A_{i-1}/H + A_{i+1}/H + ... + A_k/H)$;
- (iii) A_i is a union of cosets Z_n by the subgroup H such that the set of representatives of cosets as a subset of the cyclic group Z_p , is an arithmetic progression with difference 1;

where i = 1, ..., k.

It is well known that any finite Abelian group is isomorphic to some group of the form

$$Z/a_1Z \times \cdots \times Z/a_sZ$$
,

where $2 \leq a_s |a_{s-1}| \dots |a_2| a_1$ (see in [8]).

The following result is on one construction of the maximal by inclusion k-sum-free collection in a cyclic group.

Lemma 11: If in an Abelian group G there exists a maximal by inclusion k-sum-free collection with the capacity of k, then the group G is cyclic.

REFERENCES

- A. L. Cauchy, "Recherches sur les nombers", J. Ecole Polytech., vol. 9, pp. 99–123, 1813.
- [2] H. Davenport, "On the addition of residue classes", J. London Math. Soc., vol. 10, pp. 30–32, 1935.
- [3] H. Davenport, "A historical note", J. London Math. Soc., vol. 22, pp. 100–101, 1947.
- [4] M. Kneser, "Abschatzung der asymptotischen Dichte von Summenmengen", Math. Z., vol. 58, pp. 459–484, 1953.
- [5] M. B. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics, Berlin, Heidelberg, New York Springer-Verlag, 1996.
- [6] A. G. Vosper, "The critical pairs of subsets of a group of prime order", J. London Math. Soc., vol. 31, pp. 200–205, 1956.
- [7] A. G. Vosper, "Addendum to The critical pairs of subsets of a group of prime order", J. London Math. Soc., vol. 31, pp. 280–282, 1956.
- [8] P. Samuel, Theorie algebrique des nombres, Hermann, 1967.