Maximal k-Sum-Free Collections in an Abelian Group

Vahe Sargsyan
Institute for Informatics and Automation Problems
of the National Academy of Sciences of the Republic of Armenia
Yerevan, Armenia
e-mail: vahe_sargsyan@ymail.com, vahe sargsyan@iiap.sci.am

Abstract

Let G be an Abelian group of order n, let $k \geqslant 2$ be an integer, and A_{1}, \ldots, A_{k} be non-empty subsets of G. The collection $\left(A_{1}, \ldots, A_{k}\right)$ is called k-sum-free (abbreviated k-SFC), if the equation $x_{1}+\cdots+x_{k}=0$ has no solutions in the collection $\left(A_{1}, \ldots, A_{k}\right)$, where $x_{1} \in A_{1}, \ldots, x_{k} \in A_{k}$. The family of k-SFC in G will be denoted by $S F C_{k}(G)$. The collection $\left(A_{1}, \ldots, A_{k}\right) \in S F C_{k}(G)$ is called maximal by capacity if it is maximal by the sum of $\left|A_{i}\right|+\cdots+\left|A_{k}\right|$, and maximal by inclusion if for any $i \in\{1, \ldots, k\}$ and $x \in G \backslash A_{i}$, the collection $\left(A_{1}, \ldots, A_{i-1}, A_{i} \cup\{x\}, A_{i+1}, \ldots, A_{k}\right) \notin S F C_{k}(G)$. Suppose $\varrho_{k}(G)=\left|A_{i}\right|+\cdots+\left|A_{k}\right|$. In this work, we study the problem of the maximal value of $\varrho_{k}(G)$. In particular, the maximal value of $\varrho_{k}\left(Z_{d}\right)$ for the cyclic group Z_{d} is determined. Upper and lower bounds for $\varrho_{k}(G)$ are obtained for the Abelian group G. The structure of maximal k-sum-free set by capacity (by inclusion) is described for an arbitrary cyclic group.

Keywords- Collection, sum-free, cyclic group, non-trivial subgroup, canonical homomorphism, coset.

I. Introduction

Let G be an Abelian group of order n, let $k \geqslant 2$ be an integer, and A_{1}, \ldots, A_{k} be non-empty subsets of G. The collection $\left(A_{1}, \ldots, A_{k}\right)$) is called a k-sum-free (abbreviated k-SFC) if there is no such a collection as

$$
\left(a_{1}, \ldots, a_{k}\right) \in A_{1} \times \cdots \times A_{k}
$$

being the solution of the equation

$$
\begin{equation*}
x_{1}+\cdots+x_{k}=0 \tag{1}
\end{equation*}
$$

The family of k-SFC in G will be denoted by $S F C_{k}(G)$. Suppose

$$
\varrho_{k}(G)=\max _{\left(A_{1}, \ldots, A_{k}\right) \in S F C_{k}(G)}\left|A_{1}\right|+\cdots+\left|A_{k}\right|
$$

Let $\left(A_{1}, \ldots, A_{k}\right)$ be a k-sum-free collection in the group G. The collection $\left(A_{1}, \ldots, A_{k}\right)$ is called maximal by capacity if it is maximal by $\varrho_{k}(G)$, and maximal by inclusion if for any $i \in\{1, \ldots, k\}$ and $x \in G \backslash A_{i}$, the collection

$$
\left(A_{1}, \ldots, A_{i-1}, A_{i} \cup\{x\}, A_{i+1}, \ldots, A_{k}\right)
$$

is not k-sum-free in the group G.
In this article, the following issues are considered.
Problem 1. Definition of $\varrho_{k}(G)$.
Problem 2. The structure definition of maximal k-SFC by capacity (by inclusion).

II. Definition and Auxiliary Statements

Let A_{1}, \ldots, A_{k} be non-empty subsets of the group G. Suppose
$A_{1}+\cdots+A_{k}=\left\{x_{1}+\cdots+x_{k} \mid x_{1} \in A_{1}, \ldots, x_{k} \in A_{k}\right\}$.
If $\left(A_{1}, \ldots, A_{k}\right) \in S F C_{k}(G)$, then this is equivalent to the fact that $0 \notin A_{1}+\cdots+A_{k}$.
Let G be an Abelian group and let H be a subgroup of G. Then, through $\phi_{G, G / H}$ the ultimate canonical homomorphism $\phi_{G, G / H}: G \rightarrow G / H$, and for any subset A of the group G, we denote by A / H the subset $\phi_{G, G / H}(A)$ of the group factor G / H.

Lemma 1: Let H be a subgroup of the Abelian group G. If $\left(A_{1}, \ldots, A_{k}\right) \in S F C_{k}(G / H)$, then $\left(\phi_{G, G / H}^{-1}\left(A_{1}\right), \ldots, \phi_{G, G / H}^{-1}\left(A_{k}\right)\right) \in S F C_{k}(G)$. Moreover, if $\left(\phi_{G, G / H}^{-1}\left(A_{1}\right), \ldots, \phi_{G, G / H}^{-1}\left(A_{k}\right)\right)$ is a maximal (by inclusion) k-sum-free collection in the group G, then $\left(\left(A_{1}, \ldots, A_{k}\right)\right.$ is a maximal (by inclusion) k-sum-free collection in the group factor G / H.

Definition 1: Let A be a non-empty subset of the group G. The largest subgroup $H(A)$ of the group G such that $A+$ $H(A)=A$, is called a stabilizer of the set A.

Let G be an Abelian group, let $k \geqslant 2$ be an integer, and A_{1}, \ldots, A_{k} be non-empty subsets of G. Here $H_{G}=H_{G}\left(A_{1}+\right.$ $\cdots+A_{k}$) denotes the stabilizer of the set $A_{1}+\cdots+A_{k}$

$$
\begin{equation*}
A_{1}+\cdots+A_{k}+H_{G}=A_{1}+\cdots+A_{k} \tag{2}
\end{equation*}
$$

Lemma 2: If $\left(A_{1}, \ldots, A_{k}\right)$ is a maximal k-sum-free collection by inclusion in the group G, then the set $\left(A_{1}+\right.$ $H_{G}, \ldots, A_{k}+H_{G}$) is also a maximal k-sum-free set by inclusion in the group G.

Lemma 3: If $\left(A_{1}, \ldots, A_{k}\right)$ is a maximal k-sum-free collection by inclusion in the group G, then for any $i \in\{1, \ldots, k\}$ the collection $\left(A_{1}, \ldots, A_{i-1}, A_{i}+H_{G}, A_{i+1}, \ldots, A_{k}\right)$ is also a maximal k-sum-free collection by inclusion in the group G.

Lemma 4: If $\left(A_{1}, \ldots, A_{k}\right)$ is a maximal k-sum-free collection by inclusion in the group G, then $A_{i}=A_{i}+H_{G}$, and hence, A_{i} represents a combination of several adjacent classes of the subgroup H_{G}, which in turn means that $\left|A_{i}\right|$ is divided into $\left|H_{G}\right|$, for all $i=1, \ldots, k$.

Lemma 5: If $\left(A_{1}, \ldots, A_{k}\right)$ is a maximal k-sum-free collection by inclusion in the group G, then the set $\left(A_{1} / H_{G}, \ldots, A_{k} / H_{G}\right)$ is also a maximal k-sum-free collection by inclusion in the group G / H_{G}.

Lemma 6: Let G be an Abelian group, let $\left(A_{1}, \ldots, A_{k}\right)$ be a maximal k-sum-free collection by inclusion in the group G, and H_{G} be a stabilizer of the set $A_{1}+\cdots+A_{k}$, and $H_{G / H_{G}}$ be a stabilizer of the set $A_{1} / H_{G}+\cdots+A_{k} / H_{G}$. Then $H_{G / H_{G}}=H_{G} / H_{G}=\{0\} \in G / H_{G}$.

Lemma 7: If $\left(A_{1}, \ldots, A_{k}\right)$ is a k-sum-free collection in the Abelian group G, then for any $2 \leqslant m \leqslant k-1$ $\left(A_{1}, \ldots, A_{m-1}, A_{m}+\cdots+A_{k}\right)$ it is an m-sum-free collection in the Abelian group G.

III. DEFInition of $\varrho_{k}(G)$

In 1813, Cauchy [1] proved the first result of a theory called Additive number theory. The Additive number theory is the main tool for studying Problem 1 and Problem 2. Cauchy's result, which Davenport [2], [3] revised in 1935, is called the Cauchy-Davenport theorem. Applying this theorem we get the exact value $\varrho_{k}\left(Z_{p}\right)$ for a cyclic group of a simple order.

Theorem 1: For any prime number p the following equality is true

$$
\varrho_{k}\left(Z_{p}\right)=p+k-2 .
$$

In 1953, Kneser [4], [5] generalized Cauchy-Davenport's result for any Abelian group. Applying Kneser's theorem we obtain lower and upper bounds for any Abelian groups.

Theorem 2: Let G be an Abelian group of order n and exponent ν. Then

$$
\begin{aligned}
n+\frac{n}{p_{1}}(k-2) & =\max _{d \mid \nu}\left(\frac{n}{d}(d+k-2)\right) \leqslant \\
& \leqslant \varrho_{k}(G) \leqslant \\
\leqslant \max _{d \mid n}\left(\frac{n}{d}(d+\right. & k-2))=n+\frac{n}{p_{2}}(k-2),
\end{aligned}
$$

where p_{1} is the smallest prime divisor of ν, and p_{2} is the smallest prime divisor of n.

There exist premises to imply that the following statement is true.

Theorem 3 (Hypothesis): Let G be an Abelian group of order n and exponent ν. Then

$$
\varrho_{k}(G)=n+\frac{n}{p}(k-2),
$$

where p is the smallest prime divisor of ν.
Theorem 4: For any n, the following equality is true:

$$
\varrho_{k}\left(Z_{n}\right)=n+\frac{n}{p}(k-2)
$$

where p is the smallest prime divisor of n.
Theorem 5: Let G be an Abelian group of order n and exponent ν. Then

$$
\varrho_{k}(G) \geq \max _{d \mid \nu}\left(\frac{n}{d} \varrho_{k}\left(Z_{d}\right)\right)
$$

IV. On the Structure of a Maximal by Capacity k-Sum-Free Collection in a Cyclic Group

Let A be a subset of the Abelian group G, then denote by \bar{A} as a complement of the subset A in the Abelian group G, that is, $\bar{A}=G \backslash A$, and for any natural number m denote $m \star A=\{m a \mid a \in A\}$ and $m \star A$ will be called an extension of the set A. Let's define $\operatorname{ord}(A)=\{\operatorname{ord}(a) \mid a \in A\}$, where $\operatorname{ord}(a)$ is the order of the element a.

Lemma 8: Let $\left(A_{1}, \ldots, A_{k}\right)$ be a k-sum-free collection in the Abelian group G. Then for any $m \notin \operatorname{ord}\left(A_{1}+\cdots+A_{k}\right)$ the collection $\left(m \star A_{1}, \ldots, m \star A_{k}\right)$ is k-sum-free in the Abelian group G.

Remark 1: Note that for any $A \subseteq Z_{p}$, where p is a prime number, $\operatorname{ord}(A)=\{p\}$.

Definition 2: The arithmetic progression of P in the Abelian group G is such an entity that there exist two elements $a, d \in$ G, and a non-negative integer s, such that

$$
P=\{a+j d \mid 1 \leqslant j \leqslant s\} .
$$

In 1956, Vosper [6], [7] considered the Cauchy-Davenport result in the case of equality. Vosper's theorem will mainly help in the study of Problem 2.

As a result, we got the following result:
Lemma 9: Let $\left(A_{1}, \ldots, A_{k}\right)$ be a k-sum-free collection in the cyclic group of the prime order Z_{p} such that the difference of all arithmetic progressions in $\left\{A_{1}, \ldots, A_{k}\right\}$ is equal to d. Let $d m(\bmod p)=1$. Then $\left(m \star A_{1}, \ldots, m \star A_{k}\right)$ is a k -sum-free collection in Z_{p}, and the difference of all arithmetic progressions in $\left\{m \star A_{1}, \ldots, m \star A_{k}\right\}$ is equal to 1 .

Lemma 10: If $\left(A_{1}, \ldots, A_{k}\right)$ is a maximal k-sum-free collection by capacity in the cyclic group of prime order Z_{p}, then for any $2 \leqslant m \leqslant k-1\left(A_{1}, \ldots, A_{m-1}, A_{m}+\cdots+A_{k}\right)$ it is a maximal m-sum-free collection by capacity in Z_{p}.

Theorem 6: Let $k \geqslant 2$, and A_{1}, \ldots, A_{k} be non-empty subsets of the cyclic group Z_{p} of the prime order p, such that $A_{1}+\cdots+A_{k} \neq Z_{p}$. Then $\left|A_{1}+\cdots+A_{k}\right|=\left|A_{1}\right|+\cdots+$ $\left|A_{k}\right|-(k-1)$, if and only if for each set $A_{k-i}, i=0, \ldots, k-1$, there occurs at least one of the following three conditions:
(i) $\quad \min \left(\left|A_{1}+\cdots+A_{k-i-1}\right|,\left|A_{k-i}\right|\right)=1$;
(ii) if $\left|A_{1}+\cdots+A_{k-i}\right|=p-1$, then $A_{k-i}=\overline{c-\left(A_{1}+\cdots+A_{k-i-1}\right)}, \quad$ where $\{c\}=\overline{\left(A_{1}+\cdots+A_{k-i}\right)} ;$
(iii) $A_{1}+\cdots+A_{k-i-1}, A_{k-i}$ are arithmetic progressions with the same difference.
Remark 2: Since the permutation keeps the collection sumfree, that is, if the collection $\left(A_{1}, \ldots, A_{k}\right)$ is k-sum-free then the collection $\left(A_{i_{1}}, \ldots, A_{i_{k}}\right)$ is also k-sum-free where $\left(i_{1}, \ldots, i_{k}\right)$ is an arbitrary permutation of the set $(1, \ldots, k)$, then the sequence of choice of sets can be arbitrary.

Remark 3: All arithmetic progressions in $\left(A_{1}, \ldots, A_{k}\right)$ have the same difference.

The next theorem describes the structure of each maximal k-sum-free collection by capacity (with accuracy up to isomorphism) in the cyclic group of prime order.

Theorem 7: Let $k \geqslant 2$, let Z_{p} be a cyclic group of prime order, and let A_{1}, \ldots, A_{k} be a maximal k-sum-free collection by capacity in Z_{p}. Then, each entity of the set with accuracy up to isomorphism is one of the following:
(i) $\quad\left|A_{i}\right|=1$;
(ii) $\quad A_{i}=\overline{-\left(A_{1}+\cdots+A_{i-1}+A_{i+1}+\cdots+A_{k}\right)}$;
(iii) $\quad A_{i}$ is an arithmetic progression with difference 1 ;
where $i=1, \ldots, k$.
Theorem 8: Let $k \geqslant 2$, and p be the smallest prime divisor of a natural number n, and H be a subgroup of the group Z_{n} of order n / p, and $\left(A_{1}, \ldots, A_{k}\right)$ be a maximal k-sum-free collection by capacity in Z_{n}. Then, each entity of this set, with accuracy up to isomorphism, is one of the following:
(i) $\left|A_{i}\right|=n / p$, that is, A_{i} is the coset of Z_{n} by the subgroup H;
(ii) A_{i} is a union of cosets Z_{n} by the subgroup H such that for sets of representatives of cosets as subsets of the cyclic group Z_{p}, the following relation is correct: $A_{i} / H=$ $-\left(A_{1} / H+. .+A_{i-1} / H+A_{i+1} / H+. .+A_{k} / H\right)$;
(iii) $\quad A_{i}$ is a union of cosets Z_{n} by the subgroup H such that the set of representatives of cosets as a subset of the cyclic group Z_{p}, is an arithmetic progression with difference 1 ;
where $i=1, \ldots, k$.
It is well known that any finite Abelian group is isomorphic to some group of the form

$$
Z / a_{1} Z \times \cdots \times Z / a_{s} Z
$$

where $2 \leqslant a_{s}\left|a_{s-1}\right| \ldots\left|a_{2}\right| a_{1}$ (see in [8]).
The following result is on one construction of the maximal by inclusion k-sum-free collection in a cyclic group.

Lemma 11: If in an Abelian group G there exists a maximal by inclusion k-sum-free collection with the capacity of k, then the group G is cyclic.

REFERENCES

[1] A. L. Cauchy, "Recherches sur les nombers", J. Ecole Polytech., vol. 9, pp. 99-123, 1813.
[2] H. Davenport, "On the addition of residue classes", J. London Math. Soc., vol. 10, pp. 30-32, 1935.
[3] H. Davenport, "A historical note", J. London Math. Soc., vol. 22, pp. 100-101, 1947.
[4] M. Kneser, "Abschatzung der asymptotischen Dichte von Summenmengen", Math. Z., vol. 58, pp. 459-484, 1953.
[5] M. B. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics, Berlin, Heidelberg, New York Springer-Verlag, 1996.
[6] A. G. Vosper, "The critical pairs of subsets of a group of prime order", J. London Math. Soc., vol. 31, pp. 200-205, 1956.
[7] A. G. Vosper, "Addendum to The critical pairs of subsets of a group of prime order", J. London Math. Soc., vol. 31, pp. 280-282, 1956.
[8] P. Samuel, Theorie algebrique des nombres, Hermann, 1967.

