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Abstract—Human Pose Estimation (PE, tracking body pose 
on-the-go) is a computer vision-based technology that identifies 
and controls specific points on the human body. These points 
represent our joints and special points over the body determining 
the sizes, distances, angle of flexion, and type of the motion. 
Knowing this in a specific exercise is the basis of work for 
rehabilitation and physiotherapy, fitness and self-coaching, 
augmented reality, animation and gaming, robot management, 
surveillance and human activity analysis. Implementing such 
capabilities may use special suits or sensor arrays to achieve the 
best result, but massive use of PE is related to devices that many 
users own – namely smartphones, smartwatches, and earbuds. 

The body pose estimation system starts with capturing the 
initial data. In dealing with motion detection, it is necessary to 
analyze a sequence of images rather than a still photo. Different 
software modules are responsible for tracking 2D key points, 
creating a body representation, and converting it into a 3D space.  

Human pose estimation is a machine-learning technology, 
which means that we need data to train it. Since human pose 
estimation completes quite difficult tasks of detecting and 
recognizing multiple objects on the screen, they use neural 
networks as an engine of it. Human pose estimation projects can 
be quite complex and require expertise in a number of domains. 
They need compact tools of generative NN and transformers, the 
use of special Dynamic Time Warping, movement coding 
languages, recommenders and decision making.  

 
Keywords—Pose estimation, deep learning, dynamic time 

warping. 

I. INTRODUCTION 
Static and dynamic objects, together with the natural 

physical environment, constitute the infrastructure for the 
coexistence of the entire set of biological and mechanical 
systems [1]. The objects that move are mainly biological 
beings and systems controlled by them. In the process of 
evolution, they are equipped with systems of observation, 
coordination and safe movement in the environment. We will 
be interested in the concept of pose estimation, with a global 
meaning of determining the absolute or relative position of an 
object or its elements in the environment [2]. This ability is 
inherent in biological beings and much research and work 
have been conducted to adopt a similar technique for artificial 
mechanical devices and systems. One of the major areas of 
research belongs to the autonomous cars industry with the 
goal of creating self-driving cars. In principle, we are talking 

about automating the visual sense of the situation through a 
system of video surveillance and possibly, sound, and traffic 
control on this basis. Other tasks from our field of interest are 
the task of drone self-guidance on a map without GPS, the task 
of detecting and tracking objects observed by radar, and of 
course, our main task of controlling the human body as a 
compound of complex critical functions [1,3-5]. Specifically, 
this task is crucial in controlling robots for the work in natural 
and man-made disasters, work in outer space. The other major 
use cases include the tasks of organizing training and 
evaluating functions of specific exercises, which are critical at 
sports competitions, dance competitions, in the training of 
soldiers, rescuers, etc. [6,7]. 

The two main components of video interpretation and 
automation systems are surveillance systems and data analysis 
systems. Usually, observations are made by one or many 
cameras placed at varying angles. The observed scene can also 
be specially prepared or an arbitrary environment can be used 
[8,9]. According to the captured data, its analysis systems also 
differ, some start from standard image analyzes, which can 
use elements of image annotation, others can be trained 
without them, as conventional neural networks do [10,11]. 
Success also depends on the specification of the task and the 
structure of the recorded data. 

In this paper, we will not consider arbitrarily, but only 
focus on those moving objects that have a skeletal structure 
with hinges and a motor mechanism [12]. They are people and 
animals, as well as mechanical robots and devices. Each class 
that we study must be described with the structure, 
components, their properties and validation, etc. Input data 
that we consider for this task, can be direct raw images or their 
sequences, [2, 8, 9, 13, 14] from one or several positions. 
Annotations [15] will also be used and will introduce 
additional information, developed both by man and by 
technical means. In the context of the previous annotated 
example, the utilization of machine learning systems can be 
explored alongside direct geometric or kinetic analysis of 
motion [16-18].  Typically, the optimal outcomes are achieved 
through the combined application of geometric analysis and 
artificial intelligence. The pivotal constituents of the scientific 
and technical systems under consideration encompass 
mathematical, computational, and instrumental components. 
These components consist of observation subsystems, 
interfaces, analysis modules, and decision-making processes. 
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The precision of detection and interpretation is heavily reliant 
on the quality of the technical equipment in use. Moreover, 
the extent of the system's capabilities is also contingent on this 
equipment. 

To elaborate the configuration of the system can vary 
widely [14,19]. It can range from an elaborate setup in a 
dedicated studio replete with multiple cameras and specialized 
recording devices, to the integration of additional sensors on 
observed objects. Conversely, it could involve nothing more 
than the commonplace pairing of a regular smartphone with a 
projector. In the former professional scenario, tasks 
necessitating exacting precision can be effectively tackled. In 
contrast, the latter case is tailored to address the needs of a 
broader user base. 

The focus of our research resides in the latter category. It 
will be demonstrated that even with modest technical support, 
it is feasible to resolve these challenges with the requisite 
accuracy [15,20]. This is achievable due to the incorporation 
of modern smartphones, tablets, and similar devices, which 
come equipped with the requisite engineering for data capture 
and analysis [21]. 

II. DESIGN OF THE SYSTEM 

A. Requirements 
Skeletal structure and its components: 

The main component of the skeleton of biological beings 
is bones. The number and structure of bones in the same 
biological individuals are not constant. A person has 360 
bones, but there is a difference associated with sex, and this 
number changes over the years when some components are 
fused into one. Along with this, there is a reference table 
indicating all shapes and sizes and their possible defects [12]. 

The second important component of the skeleton is the 
mechanism of connection and interaction of bones, which is 
called a joint. There is a developed system of joint compounds 
and, of course, a reference system for the types and joints and 
functionality they are responsible for. At the technical level, 
types are distinguished such as synovial, cartilaginous and 
fibrous joints. Together they represented the following 
structure: 

Major bones of the human skeleton 

 

B. What do joints do? 

Joints connect bones. They provide stability to the 
skeleton, and allow movement. There are different types of 
joints: 

a) Synovial joints 

Joints in the arms and legs are synovial joints. The ends 
of the bones are covered with cartilage and separated by the 
joint cavity, which is filled with a thick gel called synovial 
fluid. Synovial fluid helps to lubricate the cartilage and 
provides nourishment to it. Ligaments stretch across the joint, 
connecting one bone to another and help to stabilize the joint 
so it can only move in certain directions.  

b) Cartilaginous joints 

Joints in the spine and pelvis and the joints between the 
ribs and the sternum are cartilaginous joints — they provide 
more stability but not as much movement. The bones are 
connected by cartilage in this type of joint.  

 
c) Fibrous joints 

Fibrous joints allow no movement — only stability. They 
are held together by fibrous connective tissue and located on 
the skull. 

C. Environment of implementation 

The project is under implementation in Python and Jupiter 
notebook. Further to run our program, it will be deployed on 
the cloud with a docker container. IIAP cloud would be used 
for the purpose of training, which hosts double Tesla GPUs 
and Xeon CPUs. Our task will require 2 CPU cores, 8gb of 
memory and 4gb of GPU. Since the approach suggested in the 
implantation section relies on DTW algorithm, which is 
considered as relatively simple for implementation and 
requires smaller machine resources for the runtime, it can be 
efficiently implemented for runtime on mobile devices with 
Swift of Java. 

III. IMPLEMENTATION 

A. General Description 
a) We use the popular HAR (Human activity 

recognition) dataset from UCI [21], which contains labeled 
time series. Specifically, an instance of this dataset is a person 
wearing a smartphone, which captures the linear acceleration 
and angle velocity while performing one of the following 
activities (WALKING, WALKING_UPSTAIRS, SITTING, 
WALKING_DOWNSTAIRS, STANDING, LAYING). 
Therefore, each observation is a 561-feature vector with 
time/frequency domain variables and a label describing the 
person’s activity, and the goal is to build a model that 
accurately predicts the activity using the transformed feed 
from the smartphone. 

b) Time Series Similarity Measures 
One of the simplest similarity measures for time series is the 
Euclidean distance measure. Assume that both time sequences 
are of the same length n, we can view each sequence as a point 
in n-dimensional Euclidean space, and define the dissimilarity 
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between sequences as the familiar Euclidean distance. This 
measure is simple to understand and easy to compute being 
the most widely used distance measure for similarity. 

c)  Longest Common Subsequence Similarity 
The longest common subsequence similarity measure is a 

variation of edit distance used in speech recognition and text 
pattern matching. 

The basic idea is to match two sequences by allowing 
some elements to be unmatched. The advantage of the LCSS 
method is that some elements may be unmatched or left out 
(e.g., outliers), whereas in Euclidean all elements from both 
sequences must be used, even the outliers. 

d) Dynamic Time Warping 
More flexible for some applications is the Dynamic Time 

Warping distance measure, that we use in [22,23]. This is 
preferable when two sequences have approximately the same 
overall shapes, but these shapes do not line up in the X-axis. 
In order to find a similarity between such sequences we must 
"warp" the time axis of one sequence to achieve a better 
alignment. 

Consider two gesture sequences (of possibly different 
lengths) to be compared against each other as two time series: 
𝑋 = (𝑥!, 𝑥", … , 𝑥#! , … 𝑥$!)  and 𝑌 = (𝑦!, 𝑦", … , 𝑦#" , … 𝑦$")	
Using multivariate series, these two sequences form a much 
larger feature vector for comparison. Evidently, it is 
impossible to compute a distance metric between two vectors 
of unequal dimensions. A local cost measure is defined: 
𝑑:ℱ × ℱ → ℝ > 0	where 𝑥#! , 𝑦#" ∈ 	ℱ  for 	𝑡! ∈ [1, 𝑇!], 𝑡" ∈
[1, 𝑇"]. By evaluating the cost matrix for all elements in 𝑋 and 
𝑌, we obtain the matrix 𝐶$!×$". From this local cost matrix, 
we wish to obtain a correspondence mapping element in 𝑋 to 
the elements in 𝑌  that will result in the lowest distance 
measure. We can define this mapping correspondence as f=
𝑐(1), 𝑐(2), … , 𝑐(𝑘), … , 𝑐(𝐾) 	where 𝑐(𝑘) = 𝑐(𝑥& , 𝑦&) .	 The 
mapping function should follow the time sequence order of 
the respective gestures. Hence, we impose several conditions 
on the mapping function: 
1. Boundary conditions: the starting and ending 

observation symbols are aligned to each other for both 
gestures, 𝑐(1) = 𝑐(𝑥!, 𝑦!)	and	𝑐(𝐾) = 𝑐(𝑥$! , 𝑦$").	

2. Monotonic condition: the observation symbols are 
aligned in the order of time. This is intuitive as the order 
of observation signals in a gesture signal should not be 
reversed, 𝑘! ≤ 𝑘" ≤ ⋯ ≤ 𝐾.	

3. Step size condition: No observation symbols are to be 
skipped, 𝑘'(! − 𝑘' ≤ 1. 

In this way, we arrive at an overall cost function defined 
as 𝐶(𝑋, 𝑌) = ∑ 𝑐(𝑘))

&*!  which gives an overall cost/distance 
between two gestures according to a warping path, as defined 
by the function 𝑓 . Since the function 𝐶(𝑋, 𝑌)  denotes all 
possible warping paths between two gesture observation 
sequences 𝑋 and 𝑌, the dynamic time warping algorithm is to 
find the warping path, which gives the lowest cost/distance 
measure between the two gestures. 

In our scenario, we apply dynamic programming 
principles to calculate the distance to each 𝑐(𝑘). We define 𝐷 
as an accumulated cost matrix:  
1. Initialize D(1,1) = d(x!, y!), 
2. Initialize	D(T!, T") = an	anarbitrary	large	number,		

3. Calculate	 D(t!, t") = {minD(t! − 1, t" − 1) , D(t! −
1, t"), D(t!, t" − 1)}.	

We present orientation using quaternion. Quaternions are 
a compact and complete representation of rotations in 3D 
space compared with Euler angles. Quaternions are built from 
4 dimension tuples (W, X, Y, Z). In a quaternion representation 
of rotation, singularities are avoided, giving a more efficient 
and accurate representation of rotational transformations. A 
quaternion, which is of 4 dimensions, has a norm of 1, and is 
typically represented by one real dimension and three 
imaginary dimensions. The three imaginary dimensions, 
which are 𝑖, 𝑗, and 𝑘, are unit length and orthogonal to one 
another. 𝑞 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 + 𝑤,  𝑤" + 𝑥" + 𝑦" + 𝑧" = 1, 	
𝑖𝑗 = 𝑘, 𝑗𝑖 = −𝑘, 𝑖𝑗 = −𝑗𝑖. 	Quaternions (𝑤, 𝑥, 𝑦, 𝑧)  typically 
represent a rotation about the (𝑥, 𝑦, 𝑧) axis by an angle of 𝛼 =
2𝑐𝑜𝑠+!𝑤 = 2𝑠𝑖𝑛+!g𝑥" + 𝑦" + 𝑧". 

Although each series consisted of 𝑛 (number of joints in 
the model) serialized quaternions, it will be split up into its 
individual quaternions for metric calculation. The final 
distance will be the sum of the distance between the 𝑛 pairs of 
quaternions.  

In simple case, we envision the use of a typical NN 
algorithm, where there is no specific learning phase. The 
system stores a list of multivariate time series of known 
activities and their corresponding labels in a database. When 
an unknown action is presented to the system, the system takes 
the unknown time series, and performs a sequential search 
with lower bounding DTW. 

For the sake of implementation of dynamic time wrapping 
in Python, we will use dtw package code, shown below. In this 
example, we will use 2 sine signals. One of the phases of sine 
wave signals is shifted and dtw is used to assign a specific 
group from signal1 to the second signal. 

 
from dtaidistance import dtw 
from dtaidistance import dtw_visualisation as 
dtwvis 
import random 
import numpy as npx = np.arange(0, 20, .5) 
s1 = np.sin(x) 
s2 = np.sin(x - 1) 
path = dtw.warping_path(s1, s2) 
dtwvis.plot_warping(s1, s2, path) 
distance = dtw.distance(s1, s2) 

 

 
Figure 1: Optimal warping distances between the 2 

series 
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Figure 1 shows the optimal distances between all points of 
the 2 sine waves. We can also plot the dynamic programming 
matrix (or accumulated cost matrix), which shows all the 
warping paths. This is shown in Figure 2: 

Each cell in Figure 2 is actually a number, representing 
the distance between the 2 respective data points being 
compared, one for each sequence. The darker the color, the 
lower the distance. After constructing the matrix, the optimal 
warping path is extracted (red line). 

On the other hand, the time complexity is O(M,N) 
where M, N are the lengths of the respective sequences - a 
quadratic cost. Considering that the sequences may be large 
(not uncommon in real-world examples) as well as the fact 
that KNN would still have to run afterwards, it is very likely 
that the model may take too long to get trained. 

 

B. Use Cases and Results 

Dynamic Time Warping emerges as a valuable tool for 
action recognition not only in the fitness industry but also 
across a spectrum of applications. Its scientific foundation and 
unique ability to align and compare time-series data make it a 
versatile technique to address the nuanced and dynamic nature 
of human movements [24-34]. 

In the fitness and virtual-coaching realm, DTW plays a 
pivotal role in exercise classification, repetition counting, 
form assessment, and customized training. This enables the 
trainers and individuals to personalize workout routines, 
monitor progress, and enhance overall fitness outcomes. 
(Figure 3). 

In the animation and gaming industry, DTW facilitates the 
real-time recognition of human gestures and movements, 
enhancing user experiences through immersive interactions. 
Gamification of fitness routines becomes more engaging and 
effective when DTW is employed for action recognition and 
can be used for interaction with virtual environments. 

In the realm of surveillance and human activity analysis, 
DTW contributes to identifying and classifying human 
movements in real-time video streams. This has applications 
in security and safety, where detecting anomalous activities or 

identifying specific actions in crowded environments is 
crucial. 

While DTW offers numerous benefits, it does face 
computational challenges, particularly in real-time 
applications and large-scale datasets [10,28,35]. Future 
directions include the integration of machine learning 
techniques to enhance its accuracy and efficiency, and the 
development of hybrid approaches that combine DTW with 
other alignment techniques to mitigate computational 
demands. 

In conclusion, Dynamic Time Warping's applicability 
spans across the fitness industry, self-coaching, animation and 
gaming, robot management, surveillance, and human activity 
analysis. Its scientific underpinnings make it a powerful tool 
for recognizing and analyzing complex time-series data, 
thereby contributing to advancements in various domains and 
ultimately enriching human experiences. 

 

 

 
 
 
 
 
 

Figure 3. The general menu of the system with basic use 
cases 

 

Figure 4. AI-based workout application with a virtual 
coach (on the main screen) and a trainee (on the 
supplementary frame) with an estimated pose 

 
Figure 2. Cost matrix. Red line indicates the optimal 

warping path 
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