Strong Edge-Coloring of Hamming Graphs

Aram Drambyan Russian-Armenian University Yerevan, Armenia e-mail: ardrambyan@student.rau.am Petros Petrosyan Yerevan State University Yerevan, Armeina e-mail: petros_petrosyan@ysu.am

Abstract—An edge-coloring ϕ of a graph G is called strong if any two edges at distance at most 2 receive different colors. The minimum number of colors required for a strong edge-coloring of a graph G is called a strong chromatic index of graph G and denoted by $\chi'_s(G)$. Hamming graph H(n,m) is the Cartesian product of n complete graphs K_m . In this paper, for Hamming graphs H(n,m), we show that $nm(m-1) - \frac{m(m-1)}{2} \leq \chi'_s(H(n,m)) \leq nm(m-1)$ if m is even and $nm(m-1) - \frac{m(m-1)}{2} \leq \chi'_s(H(n,m)) \leq nm^2$ if m is odd.

Keywords— Edge Colorings, Strong edge colorings, Hamming Graphs.

I. INTRODUCTION

All graphs considered in this paper are finite and simple. We denote by V(G) and E(G) the sets of vertices and edges of a graph G, respectively. The degree of a vertex $v \in V(G)$ is denoted by d(v) and the maximum degree of vertices in G by $\Delta(G)$.

An *edge-coloring* of a graph G is a mapping $\phi : E(G) \to \mathbb{N}$. ϕ is called *strong* if any two edges at distance at most 2 receive different colors. The minimum number of colors required for a strong edge-coloring of a graph G is called a *strong chromatic index* of graph G and denoted by $\chi'_s(G)$. Strong edge-coloring of graphs was introduced by Fouquet and Jolivet in 1983 [1]. Later, during seminar in Prague, Erdős and Nešetřil proposed the following conjecture.

Conjecture 1. For every graph G with maximum degree $\Delta(G)$,

$$\chi_s'(G) \le \begin{cases} \frac{5}{4}\Delta(G)^2, & \text{if } \Delta(G) \text{ is even}, \\ \frac{1}{4}(5\Delta(G)^2 - 2\Delta(G) + 1), & \text{if } \Delta(G) \text{ is odd}. \end{cases}$$

Conjecture was proved for $\Delta(G) = 3$ by [2] and [3] independently. For $\Delta(G) = 4$, currently known best result is $\chi'_s(G) \leq 21$, which was proven by Huang et al. [6]. Also, Hurley, de Joannis de Verclos, and Kang [5] showed that $\chi'_s(G) \leq 1.772\Delta(G)^2$ for any graph with sufficiently large maximum degree $\Delta(G)$. This improves the old, well-known result of $\chi'_s(G) \leq 1.998\Delta(G)^2$ proved by Molloy and Reed [7].

Graph, where each pair of vertices are connected with an edge, is called *complete* and denoted by K_n . The *Cartesian* product $G \Box H$ of graphs G and H is a graph with a set of vertices $V(G) \times V(H)$, and 2 vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent if $u_1 = v_1$ and u_2 and v_2 are

adjacent in H or $u_2 = v_2$ and u_1 and v_1 are adjacent in G. Hamming graph H(n,m) is the Cartesian product of n complete graphs K_m . The hypercube, or n-cube is a graph, the vertices of which can be represented as binary strings of length n, and two vertices u, v are adjacent if and only if their string representations are equal in all but one position and is denoted by Q_n . In 1990, Faudree, Schelp, Gyárfás and Tuza [4] showed that $\chi'_s(Q_n) = 2n$. It's easy to see that H(n, 2) is a hypercube, and the upper bound from this paper matches with the proven result for Q_n .

II. MAIN RESULT

We begin our considerations with the lower bound for strong chromatic index of Hamming graphs.

Theorem 1: Let H(n,m) be a Hamming graph with $m \ge 2$. Then

$$\chi'_{s}(H(n,m)) \ge nm(m-1) - \frac{m(m-1)}{2}$$

Proof: Vertices of the Hamming graph can be represented as a tuples of length n, where each position can take a value from 0 to m - 1, and 2 vertices are adjacent if and only if they are equal in all but one position. Let us consider m vertices $v_1 = (0, 0, ..., 0), v_2 = (1, 0, ..., 0), ..., v_m = (m - 1, 0, ..., 0)$. They all are at distance 1 from each other and all the edges, adjacent to that vertices, should receive different colors. For any vertex v from H(n,m), d(v) = n(m - 1). We get $\chi'_s(H(n,m)) \ge md(v) - \frac{m(m-1)}{2} = nm(m-1) - \frac{m(m-1)}{2} \cdot \Box$

We continue with upper bound for strong chromatic index of Hamming graphs without proof.

Theorem 2: Let H(n,m) be a Hamming graph with $m \ge 2$. Then

$$\chi_s'(H(n,m)) \leq \begin{cases} nm(m-1), & \text{if } m \text{ is even}, \\ nm^2, & \text{if } m \text{ is odd}. \end{cases}$$

REFERENCES

- Fouquet, Jean-Luc and Jolivet, Jean-Loup, "Strong edge-colorings of graphs and applications to multi-k-gons", Ars Combinatoria A, 1983.
- [2] Andersen, Lars Døvling, "The strong chromatic index of a cubic graph is at most 10", Discrete Mathematics, 1992.
- [3] Horák, Peter and Qing, He and Trotter, William T, "Induced matchings in cubic graphs", *Journal of Graph Theory*, 1993.

- [4] R. Faudree, R. Schelp, A. Gyarfas and Zs. Tuza, "The strong chromatic index of graphs", *Ars Combinatoria*, 1990.
- [5] Hurley, Eoin and de Joannis de Verclos, Rémi and Kang, Ross J, "An improved procedure for colouring graphs of bounded local density", *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2021.
 [6] Hurley, M. Statur, M. Yu, C. "Starge characteristic induced procedure of pr
- [6] Huang, M., Santana, M., Yu, G., "Strong chromatic index of graphs with maximum degree four", *The electronic journal of combinatorics*, 2018.
- [7] Molloy, M., Reed, B., "A bound on the strong chromatic index of a graph", *Journal of combinatorial theory*, 1997.