Strong Edge-Coloring of Hamming Graphs

Aram Drambyan
Russian-Armenian University
Yerevan, Armenia
e-mail: ardrambyan@student.rau.am

Petros Petrosyan
Yerevan State University
Yerevan, Armeina
e-mail: petros_petrosyan @ysu.am

Abstract

An edge-coloring ϕ of a graph G is called strong if any two edges at distance at most 2 receive different colors. The minimum number of colors required for a strong edge-coloring of a graph G is called a strong chromatic index of graph G and denoted by $\chi_{s}^{\prime}(G)$. Hamming graph $H(n, m)$ is the Cartesian product of n complete graphs K_{m}. In this paper, for Hamming graphs $H(n, m)$, we show that $n m(m-1)-\frac{m(m-1)}{2} \leq \chi_{s}^{\prime}(H(n, m)) \leq n m(m-1)$ if m is even and $n m(m-1)-\frac{m(m-1)}{2} \leq \chi_{s}^{\prime}(H(n, m)) \leq n m^{2}$ if m is odd.

Keywords— Edge Colorings, Strong edge colorings, Hamming Graphs.

I. Introduction

All graphs considered in this paper are finite and simple. We denote by $V(G)$ and $E(G)$ the sets of vertices and edges of a graph G, respectively. The degree of a vertex $v \in V(G)$ is denoted by $d(v)$ and the maximum degree of vertices in G by $\Delta(G)$.

An edge-coloring of a graph G is a mapping $\phi: E(G) \rightarrow \mathbb{N}$. ϕ is called strong if any two edges at distance at most 2 receive different colors. The minimum number of colors required for a strong edge-coloring of a graph G is called a strong chromatic index of graph G and denoted by $\chi_{s}^{\prime}(G)$.
Strong edge-coloring of graphs was introduced by Fouquet and Jolivet in 1983 [1]. Later, during seminar in Prague, Erdős and Nešetřil proposed the following conjecture.

Conjecture 1. For every graph G with maximum degree $\Delta(G)$,

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta(G)^{2}, & \text { if } \Delta(G) \text { is even } \\ \frac{1}{4}\left(5 \Delta(G)^{2}-2 \Delta(G)+1\right), & \text { if } \Delta(G) \text { is odd }\end{cases}
$$

Conjecture was proved for $\Delta(G)=3$ by [2] and [3] independently. For $\Delta(G)=4$, currently known best result is $\chi_{s}^{\prime}(G) \leq 21$, which was proven by Huang et al. [6]. Also, Hurley, de Joannis de Verclos, and Kang [5] showed that $\chi_{s}^{\prime}(G) \leq 1.772 \Delta(G)^{2}$ for any graph with sufficiently large maximum degree $\Delta(G)$. This improves the old, well-known result of $\chi_{s}^{\prime}(G) \leq 1.998 \Delta(G)^{2}$ proved by Molloy and Reed [7].

Graph, where each pair of vertices are connected with an edge, is called complete and denoted by K_{n}. The Cartesian product $G \square H$ of graphs G and H is a graph with a set of vertices $V(G) \times V(H)$, and 2 vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent if $u_{1}=v_{1}$ and u_{2} and v_{2} are
adjacent in H or $u_{2}=v_{2}$ and u_{1} and v_{1} are adjacent in G. Hamming graph $H(n, m)$ is the Cartesian product of n complete graphs K_{m}. The hypercube, or n-cube is a graph, the vertices of which can be represented as binary strings of length n, and two vertices u, v are adjacent if and only if their string representations are equal in all but one position and is denoted by Q_{n}. In 1990, Faudree, Schelp, Gyárfás and Tuza [4] showed that $\chi_{s}^{\prime}\left(Q_{n}\right)=2 n$. It's easy to see that $H(n, 2)$ is a hypercube, and the upper bound from this paper matches with the proven result for Q_{n}.

II. Main Result

We begin our considerations with the lower bound for strong chromatic index of Hamming graphs.

Theorem 1: Let $H(n, m)$ be a Hamming graph with $m \geq 2$. Then

$$
\chi_{s}^{\prime}(H(n, m)) \geq n m(m-1)-\frac{m(m-1)}{2}
$$

Proof: Vertices of the Hamming graph can be represented as a tuples of length n, where each position can take a value from 0 to $m-1$, and 2 vertices are adjacent if and only if they are equal in all but one position. Let us consider m vertices $v_{1}=(0,0, \ldots, 0), v_{2}=(1,0, \ldots, 0)$, $\ldots, v_{m}=(m-1,0, \ldots, 0)$. They all are at distance 1 from each other and all the edges, adjacent to that vertices, should receive different colors. For any vertex v from $H(n, m), d(v)=n(m-1)$. We get $\chi_{s}^{\prime}(H(n, m)) \geq$ $m d(v)-\frac{m(m-1)}{2}=n m(m-1)-\frac{m(m-1)}{2}$. \square

We continue with upper bound for strong chromatic index of Hamming graphs without proof.

Theorem 2: Let $H(n, m)$ be a Hamming graph with $m \geq 2$. Then

$$
\chi_{s}^{\prime}(H(n, m)) \leq \begin{cases}n m(m-1), & \text { if } m \text { is even } \\ n m^{2}, & \text { if } m \text { is odd }\end{cases}
$$

References

[1] Fouquet, Jean-Luc and Jolivet, Jean-Loup, "Strong edge-colorings of graphs and applications to multi-k-gons", Ars Combinatoria A, 1983.
[2] Andersen, Lars Døvling, "The strong chromatic index of a cubic graph is at most 10", Discrete Mathematics, 1992.
[3] Horák, Peter and Qing, He and Trotter, William T, "Induced matchings in cubic graphs", Journal of Graph Theory, 1993.
[4] R. Faudree, R. Schelp, A. Gyarfas and Zs. Tuza, '"The strong chromatic index of graphs", Ars Combinatoria, 1990.
[5] Hurley, Eoin and de Joannis de Verclos, Rémi and Kang, Ross J, "An improved procedure for colouring graphs of bounded local density", Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021.
[6] Huang, M., Santana, M., Yu, G., "Strong chromatic index of graphs with maximum degree four", The electronic journal of combinatorics, 2018.
[7] Molloy, M., Reed, B., "A bound on the strong chromatic index of a graph", Journal of combinatorial theory, 1997.

