Complete Caps in $A G(n, 3)$

Iskandar Karapetyan
Institute for Informatics and Automation Problems of NAS RA
Yerevan, Armenia
e-mail: isko@iiap.sci.am

Karen Karapetyan
Institute for Informatics and Automation Problems of NAS RA
Yerevan, Armenia
e-mail: karen-karapetyan@iiap.sci.am

Abstract

A cap in a projective or affine geometry over a finite field is a set of points no three of which are collinear. We give some new constructions for complete caps in affine geometry $A G(n, 3)$, some of which have maximal possible sizes.

Keywords- Affine geometry, points, caps, complete caps.

I. Introduction

The main problem in the theory of caps is to find the minimal and maximal sizes of complete caps in projective geometry $P G(n, q)$ or in affine geometry $A G(n, q)$. Determining the exact value of the minimum and maximum cardinality of caps in projective geometry $P G(n, q)$ or in affine geometry $A G(n, q)$ seems to be a very hard problem. There are some well-known constructions (doubling, product and recursive), which allow to create large high-dimensional caps based on large low-dimensional caps. Note that the problem of determining the complete cap of the minimum size is of particular interest in the Coding theory. In this paper, we consider the problem of constructing complete caps in affine geometry $A G(n, 3)$ over the field $F_{3}=\{0,1,2\}$. A cap is a set of points, no three of which are collinear. A cap is called complete when it cannot be extended to a larger one. Let us denote the size of the largest caps in $A G(n, q)$ and $P G(n, q)$ by $c_{n, q}$ and by $c_{n, q}^{\prime}$, respectively. Presently, only the following exact values are known: $c_{n, 2}=c_{n, 2}^{\prime}=2^{n}, c_{2, q}=$ $c_{2, q}^{\prime}=q+1$ if q is odd, $c_{2, q}=c_{2, q}^{\prime}=q+2$ if q is even, and $c_{3, q}=q^{2}, c_{3, q}^{\prime}=q^{2}+1[1,2]$. Apart from these general results, the exact values are known in the following cases: $c_{4,3}=c_{4,3}^{\prime}=20[3], c_{5,3}^{\prime}=56[4], c_{5,3}=45[5], c_{4,4}=$ $40, c_{4,4}^{\prime}=41[6], c_{6,3}=112[7]$. In the other cases, only lower and upper bounds on the sizes of caps in $A G(n, q)$ and $P G(n, q)$ are known $[8,9,10]$. In this paper, we give some new constructions for complete caps in affine geometry $A G(n, 3)$ implying some well-known results.

II. Main Results

It is not difficult to see that if C_{n} is a cap in $A G(n, 3)$, then $\boldsymbol{\alpha}+\boldsymbol{\beta}+\gamma \neq \mathbf{0}(\bmod 3)$ for every triple of distinct points $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in C_{n}$. For the point $\boldsymbol{\alpha} \in A G(n, 3)$, let's denote

$$
\begin{gathered}
\alpha(0)=\left\{i \mid \alpha_{i}=0, i \in[1, n]\right\} \\
\alpha(1)=\left\{i \mid \alpha_{i}=1, i \in[1, n]\right\} \\
\alpha(2)=\left\{i \mid \alpha_{i}=2, i \in[1, n]\right\} \\
X(\boldsymbol{\alpha})=\{\boldsymbol{x} \mid \boldsymbol{x} \in A G(n, 3), \boldsymbol{x}(0)=\boldsymbol{\alpha}(0)\}
\end{gathered}
$$

Further, let

$$
\begin{aligned}
& B_{n}=\left\{\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i}=1,2\right\}, \\
& B_{n, n}^{\prime}=\left\{\boldsymbol{\alpha} \in B_{n}| | \boldsymbol{\alpha}(1) \mid \text { is odd }\right\}, \\
& B_{n}^{\prime \prime}=\left\{\boldsymbol{\alpha} \in B_{n}| | \boldsymbol{\alpha}(1) \mid \text { is even }\right\} .
\end{aligned}
$$

In 2015, the second author [11] introduced the concept of P_{n}-set, which we use in our research. Notice that the set of the points $A \subseteq A G(n, 3)$ is called a P_{n}-set, if it satisfies the following two conditions:
i) for any two distinct points $\boldsymbol{\alpha}, \boldsymbol{\beta} \in A$, there exists such i that $\alpha_{i}=\beta_{i}=0$, where $1 \leqslant i \leqslant n$,
ii) for any triple of distinct points $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in A, \boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma} \neq$ $\mathbf{0}(\bmod 3)$.

Throughout this article, the notation $P_{n}\left(P_{n_{i}}\right)$ will mean P_{n}-set ($P_{n_{i}}$-set). We call P_{n} to be complete when it cannot be extended to a larger one. By the mirror inversion of the point $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we mean the point $\hat{\boldsymbol{\alpha}}=\left(\alpha_{n}, \alpha_{n-1}, \ldots, \alpha_{1}\right)$. We will define \hat{P}_{n} as the mirror inversion of all points of the set P_{n}. The set P_{n} is called odd, if $|\boldsymbol{\alpha}(0)|$ is odd for every point $\alpha \in P_{n}$. The set P_{n} is called b-saturated, if $X(\boldsymbol{\alpha}) \subseteq P_{n}$ for every point $\boldsymbol{\alpha} \in P_{n}$, where $b=1,2$. We will define the concatenation of the points of sets in the following way. Let $A \subset A G(n, 3)$ and $B \subset A G(m, 3)$. Form a new set $A B \subset A G(n+m, 3)$ consisting of all points $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}, \ldots, \alpha_{n+m}\right)$, where $\boldsymbol{\alpha}^{(1)}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in A$ and $\boldsymbol{\alpha}^{(2)}=\left(\alpha_{n+1}, \ldots, \alpha_{n+m}\right) \in B$. Similarly, one can define the concatenation of the points for any number of sets.

Theorem 1. The complete set $A \subseteq A G(n, 3)$ is a b saturated P_{n} set if and only if it satisfies the following two conditions:
i) for any two distinct points $\boldsymbol{\alpha}, \boldsymbol{\beta} \in A$, there exists such i that $\alpha_{i}=\beta_{i}=0$, where $1 \leqslant i \leqslant n$,
$\left.i_{i i}\right)$ for any triple of distinct points $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in A, \boldsymbol{\alpha}(0)=$ $\boldsymbol{\beta}(0)=\gamma(0)$ or for two of them, say for $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, there exists such i that $\alpha_{i}=\beta_{i}=0$ and $\gamma_{i} \neq 0$, where $1 \leqslant i \leqslant n$.

Theorem 2. If P_{n} is b-saturated, complete and odd, then $C_{n}=P_{n} \cup B_{n}^{\prime}\left(C_{n}=P_{n} \cup B_{n}^{\prime \prime}\right)$ is a complete cap.

Corollary 1. $c_{6,3} \geq 112[7,10]$.

Corollary 2. $c_{11,3} \geq 5504$.
It seems that this lower bound currently is the best one. Put $E_{2 n}=\left\{\boldsymbol{e}_{1,1}=(1,0, \ldots, 0), \boldsymbol{e}_{1,2}=(2,0, \ldots, 0), \boldsymbol{e}_{2,1}=\right.$ $(0,1, \ldots, 0), \boldsymbol{e}_{2,2}=(0,2, \ldots, 0), \ldots, \boldsymbol{e}_{2 n, 1}=$ $\left.(0,0, \ldots, 1), e_{2 n, 2}=(0,0, \ldots, 2)\right\}$.

Theorem 3. Let $P_{2 n}$ be a b-saturated, complete and odd set. If $|\boldsymbol{\alpha}(0)| \geq 3$ for every point $\boldsymbol{\alpha} \in P_{2 n}$ and $P_{2 n} \cap \hat{P}_{2 n}=\emptyset$ then $C_{2 n+1}=\left\{P_{2 n} \cup B_{2 n}^{\prime}\right\}\{(0)\} \cup\left\{\hat{P}_{2 n} \cup B_{2 n}^{\prime}\right\}\{(1)\} \cup\left\{E_{2 n}\right\}\{(2)\}$ is a cap.

Corollary 3. $c_{7,3} \geq 236[10]$.
For the given three complete sets $P_{n_{1}}, P_{n_{2}}$ and $P_{n_{3}}$, form the following set $P_{n_{1}} P_{n_{2}} B_{n_{3}} \cup P_{n_{1}} B_{n_{2}} P_{n_{3}} \cup B_{n_{1}} P_{n_{2}} P_{n_{3}}$. It is known [11, 12] that the formed set is a complete P_{n}-set, where $n=\sum_{i=1}^{3} n_{i}$ and n_{1}, n_{2}, n_{3} are any integers.

Theorem 4. Let $P_{n_{1}}, P_{n_{2}}, P_{n_{3}}$ be b-saturated and complete sets. If two of the sets $P_{n_{1}}, P_{n_{2}}, P_{n_{3}}$, say $P_{n_{1}}, P_{n_{2}}$, are odd, then $C_{n}=P_{n} \cup B_{n_{1}}^{\prime} B_{n_{2}}^{\prime} B_{n_{3}}$ is a complete cap, where $P_{n}=P_{n_{1}} P_{n_{2}} B_{n_{3}} \cup P_{n_{1}} B_{n_{2}} P_{n_{3}} \cup B_{n_{1}} P_{n_{2}} P_{n_{3}}, n=\sum_{i=1}^{3} n_{i}$ and n_{1}, n_{2}, n_{3} are any integers.

Corollary 4. $c_{10,3} \geq 2240[9]$.
For the given complete sets $P_{n_{1}}, P_{n_{2}}, P_{n_{3}}, P_{n_{4}}, P_{n_{5}}$ and $P_{n_{6}}$, form the following ten sets:

$$
\begin{aligned}
& A_{1}=P_{n_{1}} P_{n_{2}} P_{n_{3}} B_{n_{4}} B_{n_{5}} B_{n_{6}}, \\
& A_{2}=P_{n_{1}} P_{n_{2}} B_{n_{3}} B_{n_{4}} B_{n_{5}} P_{n_{6}} \\
& A_{3}=P_{n_{1}} B_{n_{2}} P_{n_{3}} B_{n_{4}} P_{n_{5}} B_{n_{6}} \\
& A_{4}=B_{n_{1}} P_{n_{2}} P_{n_{3}} P_{n_{4}} B_{n_{5}} B_{n_{6}} \\
& A_{5} B_{n_{1}} B_{n_{2}} P_{n_{3}} P_{n_{4}} B_{n_{5}} P_{n_{6}} B_{n_{2}} P_{n_{3}} B_{n_{4}} P_{n_{5}} P_{n_{6}}, \\
& B_{n_{3}} P_{n_{4}} P_{n_{5}} B_{n_{6}} \\
& B_{n_{1}} P_{n_{2}} B_{n_{3}} B_{n_{4}} P_{n_{5}} P_{n_{6}} \\
& A_{9}=P_{n_{1}} B_{n_{2}} B_{n_{3}} P_{n_{4}} B_{n_{5}} P_{n_{6}} \\
& A_{10} P_{n_{1}} B_{n_{2}} B_{n_{3}} P_{n_{4}} P_{n_{5}} B_{n_{6}}
\end{aligned}
$$

It is known [12, 13] that $\cup_{i=1}^{10} A_{i}$ is a complete P_{n}-set, where $n=\sum_{i=1}^{6} n_{i}$ and $n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}$ are any integers.

Theorem 5. Let $P_{n_{1}}, P_{n_{2}}, P_{n_{3}}, P_{n_{4}}, P_{n_{5}}$ and $P_{n_{6}}$ be b-saturated and complete sets. If the sets $P_{n_{1}}, P_{n_{2}}$ and $P_{n_{3}}$ are odd, then $C_{n}=P_{n} \cup B_{n_{1}}^{\prime} B_{n_{2}}^{\prime} B_{n_{3}}^{\prime} B_{n_{4}} B_{n_{5}} B_{n_{6}}$ is a complete cap, where $P_{n}=\cup_{i=1}^{10} A_{i}, \quad n=\sum_{i=1}^{6} n_{i}$ and $n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}$ are any integers.

To construct large b-saturated P_{n}-sets we need the following combinatorial problem.

Problem. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite set and $A \subseteq S$ is any subset of the set S. Assume that the weight of the subset $A \subseteq S$ is $2^{n-|A|}$ and denote by $w(A)$. Find such a
set $B=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ of the subsets of S satisfying the following three conditions:

1) for any two distinct subsets $A_{i}, A_{j} \in B, A_{i} \cap A_{j} \neq \emptyset$, where $1 \leq i, j \leq m$,
2) for any triple of distinct subsets $A_{i}, A_{j}, A_{k} \in B$, there is an element $a_{l} \in S$, such that a_{l} belongs to two of them, say $a_{l} \in A_{i}, a_{l} \in A_{j}$, but $a_{l} \notin A_{k}$, where $1 \leq$ $i, j, k \leq m, 1 \leq l \leq n$,
3) $\sum_{1}^{m} w\left(A_{i}\right)$ is maximal.

Assume that the set $B=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ satisfies the above three conditions. To construct a P_{n}-set, each subset A_{j} can be matched to the set of the points $X_{j} \subseteq A G(n, 3)$ in the following way: if $a_{i} \in A_{j}$ then the i^{\prime}-th coordinate of all points of X_{j} takes 0 value, otherwise b , where $1 \leq j \leq m$, $1 \leq i \leq n$ and $b=1,2$. It is obvious that $\cup_{1}^{m} X_{j}$ is a P_{n}-set.

REFERENCES

[1] R. C. Bose, "Mathematical theory of the symmetrical factorial design", Sankhya, vol. 8, pp. 107-166, 1947.
[2] B. Qvist, "Some remarks concerning curves of the second degree in a finite plane", Ann Acad. Sci. Fenn, Ser. A, vol. 134, pp. 27, 1952.
[3] G. Pellegrino, "Sul Massimo ordine delle calotte in $S_{4,3}$ ", Matematiche (Catania), vol. 25, pp. 1-9, 1970.
[4] R. Hill, "On the largest size of cap in $S_{5,3}$ ", Atzi Acad. Naz. Likei Rendicondi, vol. 54, pp. 378-384, 1973.
[5] Y. Edel, S. Ferret, I. Landjev and L. Storme, "The classification of the largest caps in $A G(5,3) "$, Journal of Combinatorial Theory, ser. A, vol. 99, pp. 95-110, 2002.
[6] Y. Edel and J. Bierbrauer, "41 is the largest size of a cap in $P G(4,4)$ ", Designs, Codes and Cryptography, vol. 16, pp. 151-160, 1999.
[7] A. Potechin, "Maximal caps in $A G(6,3) "$, Designs, Codes and Cryptography, vol. 46, pp. 243-259, 2008.
[8] L. Storm and J. De Beule Editors, Current topics in Galois geometry, Nova Science Publisher,Inc. New York, pp. 87-104, 2012.
[9] Y. Edel and J. Bierbrauer, "Laarge caps in small spaces", Designs, Codes and Cryptography, vol. 38(1), pp. 83-95, 2006.
[10] A. R. Calderbank and P. C. Fishburn, "Maximal three-independed subsets of $\{0,12\}^{n ",}$ Designs, Codes and Cryptography, vol. 4, pp. 203-211, 1994.
[11] K. Karapetyan, "Large Caps in Affine Space $A G(n, 3) "$, Proceedings of International Conference Computer Science and Information Technolgies, Yerevan, Armenia, pp. 82-83, 2015.
[12] K. Karapetyan, "On the complete caps in Galois affine space AG(n, 3)", Proceedings of International Conference Computer Science and Information Technologies, Yerevan, Armenia, p. 205, 2017.
[13] Iskandar Karapetyan, Karen Karapetyan, "Complete caps in projective geometry $P G(n, 3) "$, AIP Conference Proceedings, vol. 2757, 040003, 2023.

