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Abstract—Fibonacci cube is an isometric subgraph of the
n-dimensional cube. A proper edge-coloring of a graph G is a
mapping α : E(G) −→ N such that α(e) ̸= α(e′) for every pair
of adjacent edges e and e′ in G. The edge-chromatic sum of a
graph G is the minimum sum of all colors in the graph among
all its proper edge-colorings. This paper provides an upper
bound on the edge-chromatic sum of Fibonacci cubes.
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I. INTRODUCTION

Let B = {0, 1} and for n ≥ 1 set Bn = {b1b2...bn | bi ∈
B, 1 ≤ i ≤ n}. The n-cube Qn graph is the graph defined
on the vertex set Bn, vertices b1b2...bn and b′1b

′
2...b

′
n being

adjacent if bi ̸= b′i holds for exactly one i ∈ {1, 2, ..., n}.
Fibonacci cubes are introduced as follows: for n ≥ 1, let

Fn = {b1b2...bn ∈ Bn | bi · bi+1 = 0, 1 ≤ i ≤ n − 1}.
The Fibonacci cube Γn is the subgraph of Qn induced by the
vertex set Fn [1].

A proper vertex-coloring of a graph G is a mapping
α : V (G) → N such that α(u) ̸= α(v) for every uv ∈ E(G).
In that case α(v) is called the color of the vertex v. The
vertex-chromatic sum Σ(G) of a graph G is the minimum
sum of colors of all vertices among all proper vertex-colorings
of G. The concept of vertex-chromatic sum was introduced
by Kubicka [2] and Supowit [3]. The problem of finding the
vertex-chromatic sum is shown to be NP-complete in general
and polynomial time solvable for trees [4]. Jansen [5] gave a
dynamic programming algorithm for partial k-trees. In papers
[6], [7], [8], [9], [10], some approximation algorithms were
given for various classes of graphs. Some bounds for the
vertex-chromatic sum of a graph were given in [11].

A proper edge-coloring of a graph G is a mapping α :
E(G) → N such that α(e) ̸= α(e′) for every adjacent e and
e′. In that case α(e) is called a color of the edge e. Similar
to the vertex-chromatic sum of graphs, in [6], [12], and [13],
edge-chromatic sum of graphs was introduced. Namely, the
edge-chromatic sum Σ′(G) of a graph G is the minimum sum
of all colors in the graph among all its proper edge-colorings.
In [6], Bar-Noy et al. proved that the problem of finding the
edge-chromatic sum is NP-hard for multigraphs. Later, in [12],
it was shown that the problem is NP-complete for bipartite
graphs with maximum degree 3. Petrosyan and Kamalian [14]

proved that the problem is NP-complete for even more specific
class of graphs from the latter and found an 11

8 -approximation
algorithm for r-regular graphs. In [15], Salavatipour proved
that determining the edge-chromatic sum is NP-complete for
r-regular graphs with r ≥ 3. The problem can be solved in
polynomial time for trees [12].

The terms and concepts that we do not define can be found
in [16].

In the present paper, we obtain an upper bound on the edge-
chromatic sum of Fibonacci cubes.

II. MAIN RESULT

Theorem 1. For any n ∈ N, we have
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Proof. We will construct a corresponding proper edge-
coloring αn for each Γn by induction on n. We denote by
Σ′(αn) the sum of colors of all edges for the coloring αn.
From the relation Σ′(Γn) ≤ Σ′(αn), which implies from the
definition of the edge-chromatic sum, we will derive the result.

It is easy to construct α1 and α2 separately, so they have,
respectively, 1 and 3 as their sums.

Now let us construct the coloring αn for n ≥ 3 assuming
that we have already constructed all αk-s for 1 ≤ k < n. It is
known that it is possible to decompose Γn into two subgraphs
Γn−1 and Γn−2 in such a way that V (Γn) = V (Γn−2) ∪
V (Γn−1) and E(Γn) = E(Γn−2)∪E(Γn−1)∪M , where M is
a matching of 2|V (Γn−2)| vertices [1]. Let us color the edges
of the matching with the color 1. For the remaining edges let
us use the corresponding colors in the colorings αn−2 and
αn−1, and color the edge e with αn−2(e)+1 if e ∈ E(Γn−2)
and αn−1(e) + 1 if e ∈ E(Γn−1).

Clearly, we constructed a proper edge-coloring. Moreover,
Σ′(αn) = |E(Γn)| + Σ′(αn−1) + Σ′(αn−2). By [1], we
have that |E(Γn)| = nFn+1+2(n+1)Fn

5 , where Fn is the n-th
Fibonacci number.
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If we denote Σ′(αn) by a(n), then to obtain the re-
quired inequality, it is necessary to solve the 2nd order non-
homogeneous recurrence relation a(n) = a(n−1)+a(n−2)+
nFn+1+2(n+1)Fn

5 with initial conditions a(1) = 1 and a(2) =
3. To do that, we represent a(n) as the sum ah(n) + ap(n),
where ah(n) is the solution of the associated homogeneous
recurrence relation, and ap(n) is the particular solution. The
characteristic equation of the homogeneous relation is λ2−λ−
1, roots of which are λ = 1+

√
5

2 and λ = 1−
√
5

2 . Therefore,
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. As for the particular

solution, considering the formula of the common term of the
Fibonacci sequence, we get that ap(n) has the following form:
(An2+Bn+C)
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. Thus,

we obtained the forms of ah(n) and ap(n), and to get the
formula of a(n) we need to put those results in the recurrence
relation, and obtain the values of the coefficients using the
initial conditions.

The proper edge-colorings α3 and α4 are illustrated in
Figure 1.
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