An Upper Bound on the Edge-Chromatic Sum of Fibonacci Cubes

Hamlet Mikaelyan
Yerevan State University
Yerevan, Armenia
e-mail: hamletm2000@gmail.com

Petros Petrosyan
Yerevan State University
Yerevan, Armenia
e-mail: petros_petrosyan@ysu.am

Abstract

Fibonacci cube is an isometric subgraph of the n-dimensional cube. A proper edge-coloring of a graph G is a mapping $\alpha: E(G) \longrightarrow \mathbb{N}$ such that $\alpha(e) \neq \alpha\left(e^{\prime}\right)$ for every pair of adjacent edges e and e^{\prime} in G. The edge-chromatic sum of a graph G is the minimum sum of all colors in the graph among all its proper edge-colorings. This paper provides an upper bound on the edge-chromatic sum of Fibonacci cubes.

Keywords- Edge-chromatic sum, Fibonacci cubes, sum edgecoloring.

I. Introduction

Let $B=\{0,1\}$ and for $n \geq 1$ set $\mathcal{B}_{n}=\left\{b_{1} b_{2} \ldots b_{n} \mid b_{i} \in\right.$ $B, 1 \leq i \leq n\}$. The n-cube Q_{n} graph is the graph defined on the vertex set \mathcal{B}_{n}, vertices $b_{1} b_{2} \ldots b_{n}$ and $b_{1}^{\prime} b_{2}^{\prime} \ldots b_{n}^{\prime}$ being adjacent if $b_{i} \neq b_{i}^{\prime}$ holds for exactly one $i \in\{1,2, \ldots, n\}$.

Fibonacci cubes are introduced as follows: for $n \geq 1$, let $\mathcal{F}_{n}=\left\{b_{1} b_{2} \ldots b_{n} \in \mathcal{B}_{n} \mid b_{i} \cdot b_{i+1}=0,1 \leq i \leq n-1\right\}$. The Fibonacci cube Γ_{n} is the subgraph of Q_{n} induced by the vertex set $\mathcal{F}_{n}[1]$.

A proper vertex-coloring of a graph G is a mapping $\alpha: V(G) \rightarrow \mathbb{N}$ such that $\alpha(u) \neq \alpha(v)$ for every $u v \in E(G)$. In that case $\alpha(v)$ is called the color of the vertex v. The vertex-chromatic sum $\Sigma(G)$ of a graph G is the minimum sum of colors of all vertices among all proper vertex-colorings of G. The concept of vertex-chromatic sum was introduced by Kubicka [2] and Supowit [3]. The problem of finding the vertex-chromatic sum is shown to be NP-complete in general and polynomial time solvable for trees [4]. Jansen [5] gave a dynamic programming algorithm for partial k-trees. In papers [6], [7], [8], [9], [10], some approximation algorithms were given for various classes of graphs. Some bounds for the vertex-chromatic sum of a graph were given in [11].

A proper edge-coloring of a graph G is a mapping α : $E(G) \rightarrow \mathbb{N}$ such that $\alpha(e) \neq \alpha\left(e^{\prime}\right)$ for every adjacent e and e^{\prime}. In that case $\alpha(e)$ is called a color of the edge e. Similar to the vertex-chromatic sum of graphs, in [6], [12], and [13], edge-chromatic sum of graphs was introduced. Namely, the edge-chromatic sum $\Sigma^{\prime}(G)$ of a graph G is the minimum sum of all colors in the graph among all its proper edge-colorings. In [6], Bar-Noy et al. proved that the problem of finding the edge-chromatic sum is NP-hard for multigraphs. Later, in [12], it was shown that the problem is NP-complete for bipartite graphs with maximum degree 3. Petrosyan and Kamalian [14]
proved that the problem is NP-complete for even more specific class of graphs from the latter and found an $\frac{11}{8}$-approximation algorithm for r-regular graphs. In [15], Salavatipour proved that determining the edge-chromatic sum is NP-complete for r-regular graphs with $r \geq 3$. The problem can be solved in polynomial time for trees [12].

The terms and concepts that we do not define can be found in [16].

In the present paper, we obtain an upper bound on the edgechromatic sum of Fibonacci cubes.

II. Main result

Theorem 1. For any $n \in \mathbb{N}$, we have

$$
\begin{gathered}
\Sigma^{\prime}\left(\Gamma_{n}\right) \leq \\
\leq\left(\frac{5+3 \sqrt{5}}{100} n^{2}+\frac{11+9 \sqrt{5}}{100} n+\frac{6 \sqrt{5}}{125}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}+ \\
+\left(\frac{5-3 \sqrt{5}}{100} n^{2}+\frac{11-9 \sqrt{5}}{100} n-\frac{6 \sqrt{5}}{125}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
\end{gathered}
$$

Proof. We will construct a corresponding proper edgecoloring α_{n} for each Γ_{n} by induction on n. We denote by $\Sigma^{\prime}\left(\alpha_{n}\right)$ the sum of colors of all edges for the coloring α_{n}. From the relation $\Sigma^{\prime}\left(\Gamma_{n}\right) \leq \Sigma^{\prime}\left(\alpha_{n}\right)$, which implies from the definition of the edge-chromatic sum, we will derive the result.

It is easy to construct α_{1} and α_{2} separately, so they have, respectively, 1 and 3 as their sums.

Now let us construct the coloring α_{n} for $n \geq 3$ assuming that we have already constructed all α_{k}-s for $1 \leq k<n$. It is known that it is possible to decompose Γ_{n} into two subgraphs Γ_{n-1} and Γ_{n-2} in such a way that $V\left(\Gamma_{n}\right)=V\left(\Gamma_{n-2}\right) \cup$ $V\left(\Gamma_{n-1}\right)$ and $E\left(\Gamma_{n}\right)=E\left(\Gamma_{n-2}\right) \cup E\left(\Gamma_{n-1}\right) \cup M$, where M is a matching of $2\left|V\left(\Gamma_{n-2}\right)\right|$ vertices [1]. Let us color the edges of the matching with the color 1 . For the remaining edges let us use the corresponding colors in the colorings α_{n-2} and α_{n-1}, and color the edge e with $\alpha_{n-2}(e)+1$ if $e \in E\left(\Gamma_{n-2}\right)$ and $\alpha_{n-1}(e)+1$ if $e \in E\left(\Gamma_{n-1}\right)$.

Clearly, we constructed a proper edge-coloring. Moreover, $\Sigma^{\prime}\left(\alpha_{n}\right)=\left|E\left(\Gamma_{n}\right)\right|+\Sigma^{\prime}\left(\alpha_{n-1}\right)+\Sigma^{\prime}\left(\alpha_{n-2}\right)$. By [1], we have that $\left|E\left(\Gamma_{n}\right)\right|=\frac{n F_{n+1}+2(n+1) F_{n}}{5}$, where F_{n} is the n-th Fibonacci number.

If we denote $\Sigma^{\prime}\left(\alpha_{n}\right)$ by $a(n)$, then to obtain the required inequality, it is necessary to solve the 2 nd order nonhomogeneous recurrence relation $a(n)=a(n-1)+a(n-2)+$ $\frac{n F_{n+1}+2(n+1) F_{n}}{5}$ with initial conditions $a(1)=1$ and $a(2)=$ 3. To do that, we represent $a(n)$ as the sum $a_{h}(n)+a_{p}(n)$, where $a_{h}(n)$ is the solution of the associated homogeneous recurrence relation, and $a_{p}(n)$ is the particular solution. The characteristic equation of the homogeneous relation is $\lambda^{2}-\lambda-$ 1 , roots of which are $\lambda=\frac{1+\sqrt{5}}{2}$ and $\lambda=\frac{1-\sqrt{5}}{2}$. Therefore, $a_{h}(n)=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$. As for the particular solution, considering the formula of the common term of the Fibonacci sequence, we get that $a_{p}(n)$ has the following form: $\left(A n^{2}+B n+C\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(D n^{2}+E n+F\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}$. Thus, we obtained the forms of $a_{h}(n)$ and $a_{p}(n)$, and to get the formula of $a(n)$ we need to put those results in the recurrence relation, and obtain the values of the coefficients using the initial conditions.

The proper edge-colorings α_{3} and α_{4} are illustrated in Figure 1.

Figure 1

REFERENCES

[1] S. Klavžar, "Structure of Fibonacci cubes: A survey", Journal of Combinatorial Optimization 25, pp. 505-522, 2013.
[2] E. Kubicka. The chromatic sum of a graph, PhD thesis, Western Michigan University, 1989.
[3] K.J. Supowit, "Finding a maximum planar subset of a set of nets in a channel", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(1), pp. 93-94, 1987.
[4] E. Kubicka and A. J. Schwenk, "An introduction to chromatic sums", In Proceedings of the 17th Conference on ACM Annual Computer Science Conference, CSC '89, ACM Press, New York, pp. 39-45, 1989.
[5] K. Jansen, "The optimum cost chromatic partition problem", In Giancarlo Bongiovanni, Daniel Pierre Bovet, and Giuseppe Di Battista, editors, Algorithms and Complexity, Springer Berlin Heidelberg, pp. 25-36, 1997.
[6] A. Bar-Noy, M. Bellare, M. Halldórsson, H. Shachnai and T. Tamir, "On chromatic sums and distributed resource allocation", Information and Computation 140, pp. 183-202, 1998.
[7] A. Bar-Noy and G. Kortsarz, "The minimum color sum of bipartite graphs, J. Algorithms 28, pp. 339-365, 1998.
[8] K. Giaro, R. Janczewski, M. Kubale and M. Małafiejski, "A 27/26approximation algorithm for the chromatic sum coloring of bipartite graphs", Lecture Notes in Computer Science 2462, pp. 135-145, 2002.
[9] K. Jansen, "Approximation results for the optimum cost chromatic partition problem", Journal of Algorithms 34, pp. 54-89, 2000.
[10] E. Kubicka, G. Kubicki and D. Kountanis, "Approximation algorithms for the chromatic sum", In Naveed A. Sherwani, Elise de Doncker, and John A. Kapenga, editors, Computing in the 90's, pp. 15-21, 1991.
[11] C. Thomassen, P. Erdös, Y. Alavi, P.J. Malde and A.J. Schwenk, "Tight bounds on the chromatic sum of a connected graph", Journal of Graph Theory 13, pp. 353-357, 1989.
[12] K. Giaro and M. Kubale, "Edge-chromatic sum of trees and bounded cyclicity graphs", Information Processing Letters 75, pp. 65-69, 2000.
[13] H. Hajiabolhassan, M.L. Mehrabadi and R. Tusserkani, "Minimal coloring and strength of graphs", Discrete Mathematics 215, pp. 265270, 2000.
[14] P.A. Petrosyan and R.R. Kamalian, "On sum edge-coloring of regular, bipartite and split graphs", Discrete Appl. Math. 165, pp. 263-269, 2014.
[15] M.R Salavatipour, "On sum coloring of graphs", Discrete Appl. Math. 127, pp. 477-488, 2003.
[16] D.B. West, Introduction to Graph Theory, Prentice Hall, New Jersey, 2001.

