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Abstract—A proper edge-coloring of a graph G is a mapping
α : E(G) −→ N such that α(e) ̸= α(e′) for every pair of
adjacent edges e and e′ in G. An interval edge-coloring of a
graph G is a proper edge-coloring satisfying that the colors
on the edges incident with any vertex form an interval of
integers. A graph G is interval colorable if it has an interval
edge-coloring with some number of colors. It is well known
that not all graphs are interval colorable; a simple example is
K3. Recently, Asratian, Casselgren and Petrosyan introduced
and studied a new notion, the interval coloring thickness of a
graph G, denoted by θint(G), which is the minimum number
of interval colorable edge-disjoint subgraphs of G the union of
which is G. In particular, they proved that for any graph G
on n vertices, θint(G) ≤ 2⌈n

5
⌉. Using a probabilistic method,

Axenovich and Zheng improved this upper bound by showing
that θint(G) = o(n) for any graph G on n vertices. In this
paper, we study the interval coloring thickness of some classes
of bipartite graphs. In particular, we determine or bound the
interval coloring thickness of bipartite graphs constructed based
on finite affine and projective planes.

Keywords— Interval edge-coloring, interval coloring thickness,
bipartite graph.

I. INTRODUCTION

We use [1], [2] for terminology and notation not defined
here. We consider graphs that are finite, undirected, and have
no loops or multiple edges. Let V (G) and E(G) denote the
sets of vertices and edges of a graph G, respectively. The
degree of a vertex v ∈ V (G) is denoted by dG(v) (or d(v)),
the maximum degree of G by ∆(G) and the chromatic index
of G by χ′(G).

The classical concept of thickness of a graph G was
introduced by Harary [3] in 1961 as a measure, which shows
how far a graph G is from being planar. Formally, the thickness
θ(G) of a graph G is the minimum number of planar subgraphs
the union of which is G. Clearly, θ(G) = 1 if and only if G is
planar. In [4], [5], Beineke, Harary and Moon investigated the
thickness of complete and complete bipartite graphs. In [6],
Kleinert determined the thickness of hypercubes. Generally, it
is NP -complete to decide whether a graph has thickness two
[7]. There are many papers devoted to this topic, in particular,
survey on the topic can be found in [8].

An interval t-coloring of a graph G is a proper edge-
coloring α of G with colors 1, . . . , t such that all colors are
used and for each v ∈ V (G), the set of colors of the edges
incident to v is an interval of integers. A graph G is interval

colorable if G has an interval t-coloring for some positive
integer t. The set of all interval colorable graphs is denoted
by N. The concept of interval edge-colorings was introduced
by Asratian and Kamalian [9] (available in English as [10]) in
1987 and was motivated by the problem of finding compact
school timetables, that is, timetables such that the lectures
of each teacher and each class are scheduled at consecutive
periods. This problem corresponds to the problem of finding
an interval edge-coloring of a bipartite multigraph. In [9],
[10], Asratian and Kamalian observed that if G is interval
colorable, then χ′ (G) = ∆(G). Moreover, they also proved
[9], [10] that if a triangle-free graph G has an interval t-
coloring, then t ≤ |V (G)| − 1. In [16], Kamalian investigated
interval colorings of complete bipartite graphs and trees. In
particular, he proved that the complete bipartite graph Km,n

has an interval t-coloring if and only if m+n− gcd(m,n) ≤
t ≤ m + n − 1, where gcd(m,n) is the greatest common
divisor of m and n. In [11], [12], Petrosyan, Khachatrian and
Tananyan investigated interval colorings of complete graphs
and n-dimensional cubes. In particular, they proved that the
n-dimensional cube Qn has an interval t-coloring if and only
if n ≤ t ≤ n(n+1)

2 . Generally, it is an NP -complete problem
to determine whether a bipartite graph has an interval coloring
[13]. In fact, for every positive integer ∆ ≥ 11, there exists a
bipartite graph with a maximum degree ∆ that has no interval
coloring [14]. Nevertheless, some classes of graphs have been
proved to admit interval colorings; it is known, for example,
that trees, regular and complete bipartite graphs [9], [15], [16],
subcubic graphs with χ′ (G) = ∆(G) [17], doubly convex
bipartite graphs [18], [19], grids [20], outerplanar bipartite
graphs [21], (2, b)-biregular graphs [15], [22], [23] and (3, 6)-
biregular graphs [24] have interval colorings, where an (a, b)-
biregular graph is a bipartite graph where the vertices in one
part all have a degree a and the vertices in the other part all
have a degree b.

The concept of interval coloring thickness θint(G) of a
graph G was recently introduced by Asratian, Casselgren
and Petrosyan [17] as a synthesis of two previous concepts.
Formally, the interval coloring thickness θint(G) of a graph
G is the minimum number of interval colorable edge-disjoint
subgraphs of G the union of which is G. The problem of
determining of the interval coloring thickness of a graph was
motivated by some problems from scheduling theory; here, we
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mention one of them. Suppose that some firms organize job
interviews for possible candidates during a couple of days.
We need to provide the schedule of job interviews where
neither firm representatives nor candidates wait between their
meetings during these days. If we construct a bipartite graph
G with parts F and C, where vertices in F represent firms
and vertices in C represent candidates, and edges represent the
required interviews, then the minimum number of days needed
for a schedule of job interviews without waiting periods is
precisely equal to θint(G).

In [17], Asratian, Casselgren and Petrosyan proved a general
upper bound on θint(G) for an arbitrary graph G in terms of
its chromatic index. In particular, they showed that for any
graph G, θint(G) ≤ 2

⌈
χ′(G)

5

⌉
. They also derived some upper

bounds on θint(G) for bipartite graphs. In particular, it was
shown that for any bipartite graph G, θint(G) ≤

⌈
∆(G)

3

⌉
,

and if G is also Eulerian, then θint(G) ≤
⌈
∆(G)

4

⌉
. Recently,

Axenovich and Zheng [25] improved the general upper bound
by showing that θint(G) = o(n) for any graph G on n vertices.
They also constructed bipartite graphs whose possible number
of colors in interval colorings has arbitrarily many large
gaps. In [17], Asratian, Casselgren and Petrosyan suggested
the following natural problem: for any positive integer k, is
there a graph G with θint(G) = k? Using a probabilistic
method, Axenovich, Girão, Hollom, Portier, Powierski, Savery,
Tamitegama and Versteegen [26] gave a positive answer to this
problem.

In this paper, we study interval coloring thickness of bipar-
tite graphs constructed based on finite affine and projective
planes.

II. MAIN RESULTS

For a bipartite graph G with bipartition (X,Y ), we denote
the maximum degree of the vertices in X (Y ) by ∆(X)
(∆(Y )). Before we begin our considerations we need the
following result from [17].

Theorem 1: If G is a bipartite graph with bipartition (X,Y ),
then

θint(G) ≤ min{∆(X),∆(Y )}.

For n, k ∈ N (k ≥ 2), define a bipartite graph P (n, k) with
bipartition (X,Y ) as follows: V (P (n, k)) = X ∪ Y,where

X = {a} ∪
{
c(i,j)| 1 ≤ i < j ≤ k

}
,

Y =
{
b
(i)
l | 1 ≤ i ≤ k, 1 ≤ l ≤ n

}
and

E(P (n, k) =
{
ab

(i)
l | 1 ≤ i ≤ k, 1 ≤ l ≤ n

}
∪

∪
{
b
(i)
l c(i,j), b

(j)
l c(i,j)| 1 ≤ i < j ≤ k, 1 ≤ l ≤ n

}
.

Clearly, |V (P (n, k))| = nk+1+
(
k
2

)
, |E(P (n, k))| = nk+

2n
(
k
2

)
and d(a) = nk, d

(
b
(i)
l

)
= k, d(c(i,j)) = 2n (See

Fig. 1. A bipartite graph P(3,5).

Fig. 1). Theorem 1 implies that θint(P (n, k)) ≤ k. Here, we
determine the interval coloring thickness of these graphs.

Theorem 2: If n + k − 1 < nk
2 (n, k ∈ N), then

θint(P (n, k)) = 2.
Using finite projective planes, Petrosyan and Khachatrian

[14] constructed a family of bipartite graphs that do not
admit interval colorings. This family of graphs generalizes
a construction first given by Erdős [27] in 1991. Since the
interval coloring thickness of graphs from this family is un-
known, in [17], Asratian, Casselgren and Petrosyan suggested
the problem of determining the interval coloring thickness of
Erdős family of graphs as an open problem (Problem 4.2 from
[17]). Here, we present some progress on this problem.

Let π(n) be a finite projective plane of order n ≥ 2,
P = {1, 2, . . . , n2 + n + 1} be the set of points and
L = {l1, l2, . . . , ln2+n+1} the set of lines of π(n). Let
Ai = {k ∈ li| 1 ≤ k ≤ n2 + n + 1} for every
1 ≤ i ≤ n2 + n + 1; then |Ai| = n + 1 for every i, and
Ai ̸= Aj if i ̸= j. For a sequence of n2 + n + 1 integers
r1, r2, . . . , rn2+n+1 ∈ N (r1 ≥ . . . ≥ rn2+n+1 ≥ 1), we
define the graph Erd(r1, . . . , rn2+n+1) as follows:

V (Erd(r1, . . . , rn2+n+1)) = {u} ∪ {1, . . . , n2 + n+ 1}
∪
{
v
(li)
1 , . . . , v

(li)
ri | 1 ≤ i ≤ n2 + n+ 1

}
,

E(Erd(r1, . . . , rn2+n+1)) =

n2+n+1⋃
i=1

(
{uv(li)1 , . . . , uv(li)ri } ∪ {v(li)1 k, . . . , v(li)ri k| k ∈ Ai}

)
.

The graph Erd(r1, r2, . . . , rn2+n+1) is a connected bipar-

tite graph with n2 +n+2+
n2+n+1∑

i=1

ri vertices and maximum
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Fig. 2. A bipartite graph Erd(1,1,1,1,1,1,1,1,1,1,1,1,1).

degree
n2+n+1∑

i=1

ri (See Fig. 2). The following result was proved

by Petrosyan and Khachatrian [14].

Theorem 3: If
n2+n+1∑
i=n+2

ri > 2(n + 1), then

Erd(r1, . . . , rn2+n+1) /∈ N.
Theorem 1 implies that

θint(Erd(r1, . . . , rn2+n+1) ≤ n+ 2.

If r1 = r2 = · · · = rn2+n+1 = r, then the graph
Erd(r1, r2, . . . , rn2+n+1) we shortly denote by Erdn(r).
Now we are able to formulate our next result.

Theorem 4: For any n, r ∈ N, we have
1) if n, r ≥ 2, then θint(Erdn(r)) = 2,
2) if r = 1 and n ≥ 3, then θint(Erdn(r)) = 2.

Let α(n) be a finite affine plane of order n ≥ 2, P =
{1, 2, . . . , n2} be the set of points and L = {l1, l2, . . . , ln2+n}
the set of lines of α(n). Define the bipartite graph A(n) with
bipartition (P,L) as follows:

V (A(n)) = P ∪ L,E(A(n)) = {pl| p ∈ P, l ∈ L, p ∈ l}.

Our last result concerns an upper bound on θint(A(n)).

Theorem 5: For any positive integer n ≥ 2, θint(A(n)) ≤ 2.
Moreover, θint(A(2)) = θint(A(3)) = 1.

REFERENCES

[1] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey,
2001.

[2] S.T. Dougherty, Combinatorics and Finite Geometry, Springer, 2020.
[3] F. Harary, “Research problem”, Bull. Amer. Math. Soc., vol. 67, p. 542,

1961.
[4] L.W. Beineke, F. Harary and J.W. Moon, “On the thickness of the

complete bipartite graph”, Proc. Camb. Phil. Soc., vol. 60, pp. 1-5,
1964.

[5] L.W. Beineke and F. Harary, “The thickness of the complete graph”,
Canad. J. Math., vol. 17, pp. 850-859, 1965.

[6] M. Kleinert, “Die Dicke des n-dimensionalen Würfel-Graphen”, J.
Combin. Theory., vol. 3, pp. 10-15, 1967.

[7] A. Mansfiled, “Determining the thickness of graphs is NP -hard”,
Math. Proc. Cambridge Philos. Soc., vol. 9, pp. 9-23, 1983.

[8] P. Mutzel, T. Odenthal and M. Scharbrodt, “The Thickness of Graphs:
A Survey”, Graphs Comb., vol. 14, pp. 59–73, 1998.

[9] A.S. Asratian and R.R. Kamalian, “Interval colorings of edges of a
multigraph”, Appl. Math., vol. 5, pp. 25-34, 1987 (in Russian).

[10] A.S. Asratian and R.R. Kamalian, “Investigation on interval edge-
colorings of graphs”, J. Combin. Theory Ser. B, vol. 62, pp. 34-43,
1994.

[11] P.A. Petrosyan, “Interval edge-colorings of complete graphs and n-
dimensional cubes”, Discrete Math., vol. 310, pp. 1580-1587, 2010.

[12] P.A. Petrosyan, H.H. Khachatrian and H.G. Tananyan, “Interval edge-
colorings of Cartesian products of graphs I”, Discuss. Math. Graph
Theory, vol. 33, no. 3, pp. 613-632, 2013.

[13] S.V. Sevast’janov, “Interval colorability of the edges of a bipartite
graph”, Metody Diskret. Analiza, vol. 50, pp. 61-72, 1990 (in Russian).

[14] P.A. Petrosyan and H.H. Khachatrian, “Interval non-edge-colorable
bipartite graphs and multigraphs”, J. Graph Theory, vol. 76, pp. 200-
216, 2014.

[15] H.M. Hansen, Scheduling with minimum waiting periods, MSc Thesis,
Odense University, Odense, Denmark, 1992 (in Danish).

[16] R.R. Kamalian, Interval colorings of complete bipartite graphs and
trees, preprint, Comp. Cen. of Acad. Sci. of Armenian SSR, Yerevan,
1989 (in Russian).

[17] A.S. Asratian, C.J. Casselgren and P.A. Petrosyan, “Decomposing
graphs into interval colorable subgraphs and no-wait multi-stage sched-
ules”, Discrete Appl. Math., vol. 335, pp. 25-35, 2023.

[18] A.S. Asratian, T.M.J. Denley and R. Haggkvist, Bipartite Graphs and
their Applications, Cambridge University Press, Cambridge, 1998.

[19] R.R. Kamalian, Interval edge colorings of graphs, Doctoral Thesis,
Novosibirsk, 1990.

[20] K. Giaro and M. Kubale, “Consecutive edge-colorings of complete and
incomplete Cartesian products of graphs”, Congr. Numer., vol. 128, pp.
143-149, 1997.

[21] K. Giaro and M. Kubale, “Compact scheduling of zero-one time
operations in multi-stage systems”, Discrete Appl. Math., vol. 145, pp.
95-103, 2004.

[22] R.R. Kamalian and A.N. Mirumian, “Interval edge colorings of bipar-
tite graphs of some class”, Dokl. NAN RA, vol. 97, pp. 3-5, 1997 (in
Russian).

[23] D. Hanson, C.O.M. Loten and B. Toft, “On interval colorings of bi-
regular bipartite graphs”, Ars Combin., vol. 50, pp. 23-32, 1998.

[24] C.J. Casselgren and B. Toft, “On interval edge colorings of biregular
bipartite graphs with small vertex degrees”, J. Graph Theory, vol. 80,
pp. 83-97, 2015.

[25] M. Axenovich and M. Zheng, “Interval colorings of graphs-
Coordinated and unstable no-wait schedules”, J. Graph Theory, pp.
1–12, 2023.

[26] M. Axenovich, A. Girão, L. Hollom, J. Portier, E. Powierski, M. Savery,
Y. Tamitegama and Leo Versteegen, “A note on interval colourings of
graphs”, arXiv:2303.04782 [math.CO], 12 pages, 2023

[27] T.R. Jensen and B. Toft, Graph Coloring Problems, Wiley Interscience
Series in Discrete Mathematics and Optimization, New York, 1995.

143


