
Performance for General, Symmetric and Triangular

Matrix Multiplication for Multiple GPUs

Edita Gichunts

Institute for Informatics and Automation Problems of NAS RA

Yerevan, Armenia

e-mail: editagich@iiap.sci.am

 Abstract— The paper presents implementations of the

product of general, symmetric and triangular type matrices on

two graphics processors. Product performances of the

mentioned matrices on one and two Volta 100 graphics

processors with single and double precision are presented

using the cuBLASXt library.

Keywords—Graphics processors, matrix multiplication,

cuBLASXt.

I. INTRODUCTION

Along with the emergence of the hybrid system, libraries

were created implementing the most important problems of

linear algebra on the graphics processor. One of such
libraries is cuBLAS [1], thanks to the subroutines of which

the vector-vector, matrix-vector and matrix-matrix

operations are performed in the CPU-GPU hybrid system.

This paper [2] presents the efficiency of using the cuBLAS

library for matrix multiplication.

cuBLASXt [3] API of cuBLAS is a Host interface that

supports multiple graphics processors.The cuBLASXt API

provides memory allocation between the mentioned GPUs

as well as the workload distribution between them. The

cuBLASXt API ensures only BLAS3 subroutines, that is, it

provides only matrix-matrix operations. To share the load
among multiple GPUs, the cuBLASXt API uses a tiling

strategy, dividing each matrix into square tiles of BlockDim

x BlockDim dimension. To compute the first brick of the

resulting matrix, the CPU thread 0 in charge of GPU0,

loads the three bricks of the first row of the first matrix and

the three bricks of the first column of the second matrix to

perform the memory transfer and calculations.

II. MATRIX MULTIPLICATION PROCESS USING CUBLASXT

Let us present the algorithmic steps of the matrix

multiplication process on two GPUs in the case of

symmetric matrices. It consists of the following steps:

1. We include cuBLASXt's own cublasXt.h header file:

 #include <cublasXt.h>

2. The cuBLASXt API context should be initialized using

cublasXtCreate(). The cublasXtHandle_t type is a pointer

type to an opaque structure holding the cuBLASXt API

context:

cublasXtHandle_t handle,

cublasXtCreate(&handle).

3. The cublasXtDeviceSelect() function allows the user to

specify the number of GPU devices and their
corresponding IDs. With two GPUs it will be:

const int nDevices = 2,

int deviceId[nDevices] = {0, 1},

cublasXtDeviceSelect(handle, nDevices, deviceId).

4. The start time function is applied before the calculation:

cudaEventRecord(start, 0).

The calculation is performed using the following

subprogram:

cublasXtSsymm(handle,CUBLAS_SIDE_LEFT,

CUBLAS_FILL_MODE_LOWER , n, n, &alpha, a, n, b, n,

&beta, c, n).
After the subroutine is finished, the end time function is

applied:

cudaEventRecord(stop, 0).

cudaEventElapsedTime(&time_seconds, start, stop): the

first argument to this function returns the passed time

between the start and end of the program.

5. At the end of the program, the context should be

destroyed with

cublasXtDestroy(),

cublasXtDestroy(handle).

III. EXPERIMENTAL RESULTS

The tests were carried out on two Volta 100 GPUs in cuda-

10.2 environment. The product of general, symmetric and
triangular matrices with single and double precision is

implemented, and performance estimates are given on one

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

163

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

https://doi.org/10.51408/csit2023_38

and two GPUs. Graphical images of the obtained results are

as follows:

Fig. 1. Sgemm

Fig. 2. Dgemm

Fig. 3. Ssymm

Fig. 4. Dsymm.

Fig. 5. Strmm.

Fig. 6. Dtrmm

IV. CONCLUSION

Studies were carried out on matrices with 45000*45000

dimension, and we got the following results:

 In the case of general matrices, both for single

and double precisions, performance on two

GPUs is twice as high as on one GPU.

 For symmetrical matrices, both for single and

double precisions, performance on two GPUs is

twice higher than that on a single GPU.

 In the case of triangular matrices with single

precision, performance on two GPUs is twice

higher than on a single GPU, whereas with

double precision - 1.5-2 times.

 On both GPUs, the performance of the product
of general, symmetric and triangular matrices for

single precision is twice higher than that for

double precision.

REFERENCES

[1] [Online]. Available: http://docs.nvidia.com/cuda/cublas/index

[2] E. E. Gichunts, “Benchmarking of GPU NVIDIA CUDA, CUBLAS

and MAGMA Libraries Based on Matrix Multiplication Problem”,

Transactions of IIAP NAS RA, Mathematical Problems of

Computer Science, vol. 42, pp. 121—126, 2014.

[3] [Online]. Available:

https://docs.nvidia.com/cuda/cublas/index.html#using-the-cublasxt-

api

0

500

1000

1500

2000

2500

0 20000 40000 60000

GPU

2GPU

Matrix size

G
Fl
o
p
/s

0

200

400

600

800

1000

0 20000 40000 60000

GPU

2GPU

Matrix size

G
Fl
o
p
/s

0

500

1000

1500

2000

2500

0 20000 40000 60000

GPU

2GPU

Matrix size

G
Fl
o
p
/s

0

200

400

600

800

1000

1200

0 20000 40000 60000

GPU

2GPU

Matrix size

G
Fl
o
p
/s

0

1000

2000

3000

4000

5000

0 20000 40000 60000

GPU

2GPU

Matrix size

G
Fl
o
p
/s

0

500

1000

1500

2000

2500

0 20000 40000 60000

GPU

2GPU

Matrix size

G
Fl
o
p
/s

164

http://docs.nvidia.com/cuda/cublas/index

	I. Introduction
	II. Matrix Multiplication Process Using cuBLASXt
	III. Experimental results
	IV. Conclusion
	References

