
The Systems with Reconfigurable Structure Based
on Multi-Functional Elements

Sergo Tsiramua
University of Georgia

Tbilisi, Georgia
e-mail: s.tsiramua@ug.edu.ge

Hamlet Meladze
Muskhelishvili Institute of Computational

Mathematics of Georgian Technical University
Tbilisi, Georgia

e-mail: h meladze@hotmail.com

Irakli Basheleishvili
Akaki Tsereteli State University

Kutaisi, Georgia
e-mail: basheleishvili.irakli@gmail.com

Tinatin Davitashvili
Ivane Javakhishvili Tbilisi State University

Tbilisi, Georgia
e-mail: tinatin.davitashvili@tsu.ge

Abstract—Multi-functional elements are a special class of
elements, the reliability model od which differs from the
classical two-pole ”on-off” model. A multi-function element
can have partly false states in addition to non-false and false
states. The multi-functionality of the elements leads to the
formation of flexible, adaptable systems with reconfigurable
structure, in which, in case of partial failure of the element, it
is possible to continue the successful functioning of the system
by redistributing the functions between the elements. In this
paper, the properties of multi-functional elements and systems,
assembled on their basis, reliability models and issues of optimal
reconfiguration are discussed.

Keywords— Multi-functional elements, reconfigurable systems,
flexibility, maneuverability, reliability.

I. INTRODUCTION

The multi-functionality of elements leads to the formation
of flexible, structurally re-configurable, adaptable systems, in
which, in case of partial failure of the element, it is possi-
ble to continue the successful functioning of the system by
redistributing functions between the elements and exchanging
them. Such properties can be observed in completely different
types of systems, for example, technical, energy, automation,
production, organizational, human-machine and other types
of systems. In case of technical systems, it is possible to
distinguish robotic systems equipped with multi-functional
robots, computer clusters, multi-processor computers, multi-
core processors, cloud server systems, etc. [1], [2]. In or-
ganizational, industrial or man-machine systems the complex
production brigades, dispatch services, transport crews, project
groups, sports teams, etc., can be composed of multi-functional
specialists [3], [4].

Let us consider the properties of multi-functional elements
and systems constructed on their basis, reliability models and
issues of their optimal reconfiguration.

II. MULTI-FUNCTIONAL ELEMENTS

A multi-functional element (MFE) is an element with func-
tional redundancy, which has the ability to perform at any

time moment t any one function f from the set of system’s
functional resources (functional capabilities) Fa = {fe| e ∈
[1, k]}, k > 1 [3].

Only one state out of the number of all possible failures
(2k) regarding the separate functions of the MFE corresponds
to the complete failure of the element, when it loses the ability
to perform all functions. The rest of the states (2k − 1), when
the element can perform at least one function, correspond to
the element’s performance states. However, in case of partial
failure of the element in relation to the function assigned to
it, when it still remains in a working condition, it may not be
enough for the system to continue successful functioning if
the lost function is not compensated by another element.

Depending on the functional capacity, the MFE can be dual-
functional for a given system (k = 2), tri-functional (k = 3)
and so on, k-functional (k > 1). When k = 1, we are dealing
with a classical type single-function element, which in a given
system can perform only one function, assigned to it, out of
system’s functions set F , and it can be in an operating or
failure mode.

Based on this the number of functions m imposed on the
system A from the set F , MFE can be functionally complete
(k = m) or incomplete (k < m) for the given system.

If MFE a has an ability to perform any function Fa = F
from the set of functions F = {fj | j ∈ [1,m]}, assigned to
the system A, we call such an element a functionally complete
element.

If the MFE a can perform some part of the functions Fa ⊂
F from the functions assigned to the system A, we call such
MFE a functionally incomplete element with respect to the
given system.

From the point of view of failure, it is possible to have
a complete failure of the MFE, when the element loses the
ability to perform the function assigned to it and at the same
time loses all the functional resources that it has in relation to
the given system.

On the other hand, in the process of functioning, the partial
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failure of the element is possible, when the element loses the
ability to perform the function assigned to it, but retains the
ability to perform other functions assigned to the system.

In the first case, i.e., in the case of complete failure,
the element completely fails and in order to continue the
successful operation of the system, it is necessary to restore
the element or replace it with a backup element in case of
non-recoverable failure.

In the second case, when we have a partial failure of multi-
functional element and it loses the ability to perform the
assigned function, it can switch to another function, and the
performance of its lost function can be continued by another
multi-functional element of the system. In such a case, the
successful functioning of the system is ensured by the inter-
changebility of elements. Thus, in the case of partial failure of
MFE, when the failure occurs only with respect to the function
fi ∈ Fa which is in the process of execution, the MFE is
switched in the supposed time interval to the other function
fj ∈ Fa from the set of the functions Fa = {fe| e ∈ [1, k]}
and the missing function fi is being performed by another
MFE of the given system, which previously performed the
function fj (the mutual replacement of elements occurs).

The goal of our research is the second case, since the
reliability of systems based on multi-functional elements con-
sidering the partial failure of the elements, is less studied
and investigated. Accordingly, the issues of modeling, syn-
thesis, reliability and design of such systems are less covered
in scientific publications. Without modeling and quantitative
assessment of reliability, it is impossible to design systems
with high reliability based on multi-functional elements.

III. LOGICAL MODELS OF SYSTEMS WITH
MULTI-FUNCTIONAL ELEMENTS

The structure of the system created on the basis of MFE
is determined by the composition of the elements, their inter-
relationships, the functional resources (functional capabilities)
of the elements and the scheme of distribution of functions
between the elements. Thus, the main parameters of the
structure of the systems composed on the basis of MFE are:

n – number of elements in a system A = {a1, a2, ..., an};
m – number of functions F = {f1, f2, ..., fm} imposed on

the system A;
ki – the number of functional resources of i-th MFE;
kΣ – the sum of the functional resources of all MFEs of the

system (the number of functional resources of the system);
δS - scheme of distribution of functions between elements.
The characteristics of assessment criteria of system reliabil-

ity - the probability of reliable operation, flexibility, viability,
resistance to failure - uniquely depend on the structural pa-
rameters and their interrelationship.

When modeling the reliability of systems designed on the
basis of MFEs, it is important to consider the operation mode
of the system.

Consider such a mode of operation of the system when: 1)
In the system, simultaneously, in parallel mode, all functions

assigned to the system, which are distributed among multi-
functional elements are performed; 2) Each MFE can perform
only one function from its set of functional resources at each
moment of time.

When the system consists of MFEs, the system working
in such a parallel mode has a flexible structure not based on
the reserve elements, but based on a functional redundancy of
MFEs. If a partial failure of any MFE occurs in relation to the
assigned function, such a replacement of the elements will be
possible (rearrange the system structure) when the condition
of simultaneous performance of all the functions assigned to
the system is restored. It should also be noted here that the
effective functioning of such systems depends not only on n,
m, kΣ and on k parameters, but also on the δS scheme of
distribution of functions between MFEs.

Thus, it is assumed that by the system A = {ai| i ∈ [1, n]}
the function F = {fj | j ∈ [1,m]} succeeds, if in a given
time interval T all functions fj , j ∈ [1,m] from the set F of
assigned to the system functions are performed, provided that
any MFE ai of system A at any time moment tτ ∈ T performs
only one function from the set of its functional resources Fa =
{fe| e ∈ [1, k]}, k > 1 (Fa ⊆ F ).

In the reliability model of systems with a reconfigurable
structure, all the ways of successful operation of the system
should be considered [5]. When system A consists of MFEs,
then the function F can be performed by different distribution
of functions between MFEs. In order to build a reliability
model, it is advisable to describe using logical functions the
ways of successful functioning of the system and the condition
of the its operability.

Let us build the logical matrix B(m × n) = [ai(fj)] of
functional resources of the system, in which

ai(fj) =

{
1, if MFE ai can perform a function fj ,

0, if MFE ai can’t perform a function fj .

In the general case, when n ≥ m = ki > 1, i ∈ [1,m], that
is the system is composed of functionally complete MFEs, the
shortest ways of successful functioning of the system can be
written using the following conjunctions:

Sq = ai1(fj1) ∧ ai2(fj2) ∧ · · · ∧ aim(fjm), (1)

where

i1 = 1, 2, ..., n−m+ 1;

i2 = i1 + 1, i1 + 2, ..., n−m+ 2;

· · · · · · · · · · · ·
im = im−1 + 1, im−1 + 2, ..., n;

j1, j2, ..., jm ∈ [1,m]; j1 ̸= j2 ̸= ... ̸= jm; q ∈ [1, NS ].

Ns is an indicator of system flexibility, which represents the
number of options for the distribution of functions between
MFEs, that is, it shows the number of the shortest ways of
functioning of the system. The index of flexibility of the
adjustable system Ns, n > m = ki > 1, i ∈ [1,m], which is
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described by B(m × n) rectangular matrix, is calculated by
the formula:

Ns = per{B(m× n)} = n!/(n−m)!, (2)

where per is a permanent of the matrix B(m× n).
It follows from (1) that each shortest way of functioning

of the system represents the conjunction of such elements of
matrix B(m×n) that are located in different rows and columns
of the matrix. The system operability condition is described
by the disjunction of the shortest paths of operation:

FA[ai(fj)] =

NS⋃
q=1

Sq. (3)

In the special case when n = m = ki > 1, i ∈ [1,m] and
the matrix of functional resources of the system is a square
unit matrix, the shortest paths for the successful functioning
of the system can be written by the following logical function:

Sq = a1(fj1) ∧ a2(fj2) ∧ ... ∧ an(fjm), (4)

where j1, j2, ..., jm ∈ [1,m]; j1 ̸= j2 ̸= ... ̸= jm; q ∈ [1, Ns].

Ns = per{B(m× n)} = n!. (5)

The condition of system operability in this case is also
described by Formula (3).

In both considered cases, when the system is composed of
functionally complete elements (m = ki > 1, i ∈ [1,m]),
the index of flexibility of the system (the number of shortest
paths of successful functioning) increases as factorial with the
increase of Ns, m and n (Ns = n!/(n − m)! or n!). When
the system is composed of a functionally incomplete MFE
(m > ki > 1, i ∈ [1,m]), obviously the number of ways
of functioning is less than n!/(n − m)! or n! and depends
on the scheme of distribution of functions between the MFEs
δS . Although a manual modeling of the ways of functioning
of the system is also difficult in this case. In both cases, it is
advisable and even necessary to model the ways of functioning
using a logic model (1) on a computer.

The mode of operation discussed above characterizes multi-
core processors operating in parallel computing mode and
multi-processor computers, robotic systems and ”Human-
Machine” crews of transport systems, sports teams, etc.

Now let’s consider such a case of system performance
condition when: 1) All functions assigned to the system,
which are distributed among multi-functional elements, are
performed in sequential or mixed (parallel-sequential) mode;
2) Each MFE can perform only one function from its set of
functional resources at each moment of time.

In such a case, when the system is constructed with func-
tionally complete MFEs n ≥ m = ki > 1, i ∈ [1,m], the
shortest ways of functioning are described by the following
logical function:

Sq = ai1(f1) ∧ ai2(f2) ∧ ... ∧ ain(fm), (6)

where i1, i2, ..., in ∈ [1, n]; q ∈ [1, NS ],

NS = nm. (7)

Obviously, when the system is composed of functionally
incomplete elements, then in the matrix of functional resources
of the system B(m × n) in addition to 1s, there are also 0s,
and the number of ways of functioning is less than nm.

As in the case of the parallel mode, the condition of
operability of the systems operating in the sequential mode
is also described by the disjunction of the shortest paths of
operation. It should be noted that under the given conditions
the system can function successfully even when nm. E.g.,
such class of systems includes a project group that involves
multi-functional specialists who, at a certain interval of time,
perform sequentially the tasks provided by the project.

IV. OPTIMAL MANAGEMENT OF SYSTEMS
RECONFIGURATION

As we can see, there is a redundancy of ways of successful
operation in the reconfigurable systems constructed on the base
of MFEs in both considered working (parallel and sequential)
modes. Such systems have high indicators of flexibility, which
indicate high potential opportunities for restructuring (recon-
figuration of the structure). Accordingly, the maneuverability
of the system is increased, which characterizes the process of
redistribution of functions between elements when fixing par-
tial failure of an element. In this case, a comparative analysis
of system flexibility and maneuverability is appropriate.

Flexibility of the system structure is a number of the shortest
ways of functioning of the system (or the number of variants
for the distribution of functions between the elements of the
system), which is calculated by formulas (2), (5) and (7) in the
case of functionally complete MFEs for the considered modes
of operation.

Maneuverability is the ability of a system to rearrange its
structure to continue successful operation in response to total
or partial failure of an element.

Maneuvering is a process of reconfiguration, when, in case
of element failure, the system structure is rearranged by
replacing or interchanging elements (reconfiguration).

The number of maneuvering cases Nτ when the system
is operating in parallel mode is minimal when there is a
sequential loss and depletion of functional resources by any
i-element with minimal functional resources. In this case, the
system’s functional resource matrix will have the following
state:

ai(f1) = ai(f2) = ... = ai(fmin(k)) = 0, i = const. (8)

The number of maneuvers Nτ is minimal even when all ele-
ments of the system consistently lose the ability to perform the
same function. In this case, the system’s functional resource
matrix will have the following state:

a1(fj) = a2(fj) = ... = an(fj) = 0, j = const. (9)

The number of maneuvers Nτ is maximal when various
functions are successively lost by the different elements, and
the moment in matrix of functional resources occurs when

ai1(fj1) = ai2(fj2) = ... = aim(fjm) = 0, (10)
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where i1 ̸= i2 ̸= ... ̸= im, j1 ̸= j2 ̸= ... ̸= jm. In such a
case, the system has a maximum number of reconfiguration
variants.

In the general case, when n ≥ m ≥ k, max(Nτ ) = kΣ −
2n + 1; in a private case, when n > m = k, max(Nτ ) =
nm−2n+1; In case when n = m = k, max(Nτ ) = (n−1)2.
Thus, the index of maneuverability of the system, which is
expressed in the number of performed maneuvers, depends on
the sequence of loss of functional resources by the elements
and varies in the range [min(ki)− 1, kΣ − 2n+ 1].

The flexibility of the system structure can be determined
in advance during the system design process depending on
whether the system is assembled from functionally complete or
incomplete MFEs. As for maneuvering, it is an fuzzy process
that can take place in case of partial or complete failure of the
element. Predicting this in advance is associated with various
difficulties, and in some cases is even impossible.

At the stage of designing the system, the tasks of the initial
optimal distribution of functions among the elements, and
at the stage of operation, in the case of fixing the failure
of the element, the tasks of optimal reconfiguration of the
systems are arising. In order to implement the mentioned
tasks, it is necessary to move from the logical description
of the functional resources of the system to the probabilistic
description of the functional capabilities. Logical (0, 1) matrix
of system functional resources B(m × n) = [ai(fj)] should
be replaced with the probability matrix P (m× n) = [pi(fj)],
where pi(fj), i ∈ [1, n], j ∈ [1,m], is the probability of
performance the j–function by i-element without failure. Since
MFEs belong to the class of multi-pole elements, Fuzzy Logic
methods can be used to obtain estimations for pi(fj) [6]:

pi(fj) =

{
0 < pi(fj) < 1,when ai can perform a function fj ,

0,when ai can’t perform a function fj .

Accordingly, the shortest ways of functioning of the system
can be described using the following probabilistic representa-
tion:

PF (Sq) = pi1(fj1)× pi2(fj2)× ...× pim(fjm), (11)

where i1 ̸= i2 ̸= ... ̸= im, j1 ̸= j2 ̸= ... ̸= jm, q ∈ [1, NS ].
Based on the fact that in most cases, the probabili-

ties of operation of MFEs differ for individual functions,
which means that it is important to which way the system
starts functioning and which way it continues to function
after reconfiguration. If we know the numerical values of
PF (S1), PF (S2), ..., PF (SNS

), we will be able to make an
optimal rearrangement of the structure, for which we should
rank PF (Sq) in descending order. In the process of forming a
reconfigurable system, it is advisable to redistribute functions
between MFEs with maxPF (Sq).

If we consider that the number of ways of successful
operation of the system increases as factorial, with respect
to the growth of parameters n, m and k, the need for optimal
control of reconfiguration becomes clear. In order to automate

and optimally reconfigure the described process, it is possible
to use a modernized version of the target task:

FA[ai(fj)] =

n∏
i=1

m∏
j=1

pi(fj)x → max,

n∑
i=1

xij = 1, j ∈ [1,m],

m∑
j=1

xij = 1, i ∈ [1, n].

(12)

In contrast to the classical model of optimal destination, in
the proposed model, the double sum is replaced by a double
product in order to obtain a probabilistic value of estimation.

At the initial stage, at the stage of assembling the reconfig-
urable system with MFEs, when n > m = ki, i ∈ [1, n],
using the model (12) the optimal selection of m from n
elements is performed and the optimal distribution of functions
between the elements are carried out. When n = m = ki,
i ∈ [1, n], the optimal distribution of functions between
elements is carried out using the model (12). In case of
partial failure of the MFE in the process of functioning of the
system, by entering 0 in the appropriate place in the matrix of
functional resources and using the model (12), redistribution
of functions between elements (interchange of elements) and
optimal reconfiguration is performed. It should be noted that
similar processes take place in parallel computing systems as
well [7].

V. CONCLUSION

In the general case, when n ≥ m ≥ ki, i ∈ [1, n],
the probability of successful operation of the reconfigurable
system depends on the scheme of distribution of functions
fj among the MFEs both in the process of system design
and operation. Using model (12), based on the evaluations
of PF (Sq), it is possible to optimally design the system and
optimally manage the reconfiguration process.
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