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Abstract—This paper explores the issue of achieving
asymptotically consistent clustering for time series data
generated by ARMA-GARCH processes. We establish a metric
in the space of invertible ARMA-GARCH processes and outline
a consistent estimation method for this metric. Subsequently, we
employ this metric to demonstrate the asymptotic consistency of
the discussed algorithm.
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I. INTRODUCTION

In this paper, we consider the problem of asymptotically
consistent clustering of time series datasets generated by
ARMA-GARCH processes. Let {et} be iid noise with E[et] =
0 and E[e2t ] = 1 then, the ARMA(p, q)-GARCH(p′, q′) model
is defined as follows.

Definition 1: {Xt} random process is an ARMA(p, q)-
GARCH(p′, q′) process if {Xt} is weakly stationary and if
for every t the following equations hold. ϕ(B)Xt = θ(B)ϵt

ϵt = σtet
(1− β(B))σ2

t = ω + α(B)ϵ2t

(1)

where
ω > 0

αi ≥ 0, i = 1, 2, ..., p

βj ≥ 0, i = 1, 2, ..., q

and polynomials ϕ(B), θ(z), β(B), α(B) are characteristic
polynomials of the corresponding lag polynomials.

Inspired by [1] and [2], we define the ground truth clusters
and consistent clustering of the time series data generated
by ARMA-GARCH processes as follows. We are given a
time series dataset with N samples D = {xi}Ni=1. We
assume that each xi is generated from one of the κ unknown
ARMA-GARCH processes. We denote by X(k) the underlying
ARMA-GARCH process for the cluster Gk. The time series
samples may have arbitrary lengths, and we denote the length
of xi time series by ni.

Definition 2 (Ground-truth G): Let G = G1, ...,Gk be a
partitioning of the set {1, 2, ..., N} into κ disjoint subsets Gk,
Gk ̸= ∅, k = 1, 2, ..., κ, such that the xi, i = 1, 2, ..., N is
generated by X(k) for some k = 1, 2, ..., κ if and only if
i ∈ Gk. We call G a ground-truth clustering.

The domain of the clustering function f is the finite set
of samples D = {xi}Ni=1 and a parameter κ (the number of

target clusters) and the range is a set of partitions f(D, κ) :=
{C1, ..., Cκ} of the index set {1, 2, ..., N}.

Definition 3 (Consistency: offline settings): A clustering
function f is consistent for a set of sequences D if f(D, κ) =
G. Moreover, denoting by n = min{n1, ..., nN}, f is called
strongly asymptotically consistent in the offline sense if with
probability 1 P (∃n′∀n > n′f(D, κ) = G) = 1. We call
it weakly asymptotically consistent if limn→∞ P (f(D, κ) =
G) = 1

If the roots of the polynomial β(z) are outside the unit
circle then the operator (1− β(B))−1 exists and we have the
so-called ARCH(∞) representation of the GARCH part of the
(1) process [3].

σ2
t = ψ0 +

∞∑
i=1

ψiϵ
2
t−i (2)

where
ψ0 =

ω

1−
∑q

j=1 βj
(3)

and coefficients ψi are the coefficients of the characteristic
polynomial of the (1−β(B))−1α(B) which can be determined
with the following recursive equations [3].

ψi =

{
αi +

∑n∗

j=1 βjψi−j , if i ≤ q∑n∗

j=1 βjψi−j , if i > q
(4)

where n∗ = min{p, i−1}, βi = 0 i > p and αi = 0 i > q.
If the roots of the polynomial θ(z) are outside the unit circle

then it ensures the existence of the operator θ(B)−1 and we
can obtain an analogical representation for the ARMA part of
{Xt} (so-called AR(∞) representation).

π(B)Xt = ϵt (5)

where π(B) = θ(B)−1 ∗ ϕ(B) = 1−
∑∞

j=1 πjB
j . The coef-

ficients of the sequence πx are determined by the following
recursive equations ( [4]: p. 86):

πj +

q∑
k=1

θkπj−k = −ϕj , j = 0, 1, ... (6)

where ϕ0 := −1, ϕj := 0 for j > p, and πj := 0 for j < 0. Let
us denote the space of invertible ARMA-GARCH processes
by U .
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II. METRIC ON U
Having (2) and (5) representation of the ARMA(p, q)-

GARCH(p′, q′) process, we define a metric on U as fol-
lows. Let {Xt} and {Yt} be two stationary ARMA(p, q)-
GARCH(p′, q′) processes and ΨX = {ψi,X}∞i=0, πX =
{πi,X}∞i=0 and ΨY = {ψi,Y }∞i=0, πY = {πi,Y }∞i=0 be the
corresponding sequences of {Xt} and {Yt} obtained from
the ARCH(∞) and AR(∞) representations. Then, for positive
constants u and v (where u+ v = 1)

d(Xt, Yt) = u||πX − πY ||2 + v||ψX − ψY ||2 (7)

It is easy to see that (7) is a well-defined metric on U since
the coefficients πj , ψj are decreasing exponentially.

We are interested in an asymptotically consistent estima-
tor for the metric (7). To construct such an estimator, we
follow the methods described in [1] for the estimation of
the analogical distance defined in the space of ARMA pro-
cesses. Let xi be a realization of stationary ARMA(p∗,q∗)-
GARCH(p′∗,q′∗) process with an unknown parameter vec-
tor θ∗ = (ϕ∗1, . . . , ϕ

∗
p, θ

∗
1 , . . . , θ

∗
q , ω

∗, β∗
1 , , ..., β

∗
p , α

∗
1, ..., α

∗
q).

Then, assuming that the orders m∗ = (p∗, q∗, p′∗,q′∗) are
known, then it is well known that the Gaussian quasi-log-
likelihood estimator of the θ (denoting by θ̂) is strictly
asymptotically consistent [5].

θ̂
a.s.−−−−→

n−→∞
θ∗ (8)

If the orders of the {Xt} are unknown, then the model
orders and parameters need to be estimated simultaneously.
This is done by model selection procedures, for example,
penalizing the QML with the suitable constrained. For the
given Pmax, Qmax, P

′
max, Q

′
max model orders, consider the

family of model orders M = {(p, q, p′,q′) : p < Pmax, q <
Qmax, p′ < P ′

max, q′ < Q′
max} such that the unknown

model order m∗ ∈ M. In [5], authors showed that for the
stationary ARMA(p∗,q∗)-GARCH(p′∗,q′∗) process estimate θ̂
obtained via minimizing the BIC (Bayesian Information Cri-
terion) penalized QML, is weakly asymptotically consistent
[5].

P (m̂ = m∗) −−−−→
n−→∞

1, θ̂[m̂]
P−−−−→

n−→∞
θ∗ (9)

Suppose {X(1)
t }, {X(2)

t } ∈ U are two invertible ARMA-
GARCH processes with true parameter vectors θ(1) and θ(2).
The x1 = {x11, x12, .., x1n1

} and x2 = {x21, x22, .., x2n2
} are re-

alisation of the {X(1)
t }, {X(2)

t } processes. Then the empirical
distance of metric (7) is defined as follows:

d̂(x1,x2) = u||π̂X − π̂Y ||2 + v||ψ̂X − ψ̂Y ||2 (10)

We also define the estimate between time series sample xi and
random process {X(1)

t } as follows:

d̂(x1, X
(1)) = u||π̂X − πY ||2 + v||ψ̂X − ψY ||2| (11)

where {π̂i,j}∞j=0, {ψ̂i,j}∞j=0 are given by (3), (4) and (6) calcu-
lated with estimated parameters vector θ̂(i) estimated by BIC

penalized QML. Having discussed the consistent estimation
procedure of the ARMA-GARCH model parameters, it is easy
to formulate the following propositions.

Proposition 2.1: If the orders of the stationary
{X(1)

t }, {X(2)
t } ∈ U ARMA-GARCH process are known,

then the d̂(x1,x2) and d̂(x1, X
(1)) distance estimators are

strictly consistent

d̂PIC(x1,x2)
a.s.−−−−→

n−→∞
dPIC(X

(1), X(2))

d̂PIC(x1, X
(2))

a.s.−−−−−→
n1−→∞

dPIC(X
(1), X(2))

Proposition 2.1 ensures the almost sure convergence but the
condition of the known orders is quite impractical. The follow-
ing proposition is formalized with more relaxed assumptions
leading to weak convergence of the distance estimator.

Proposition 2.2: If Pmax, Qmax, P
′
max, Q

′
max are given

such that the model orders of stationary {X(1)
t }, {X(2)

t } ∈ U
ARMA-GARCH process m1,m2 ∈ M, then the d̂(x1,x2)
and d̂(x1, X

(1)) distance estimators are weakly consistent

d̂PIC(x1,x2)
P−−−−→

n−→∞
dPIC(X

(1), X(2))

d̂PIC(x1, X
(2))

P−−−−−→
n1−→∞

dPIC(X
(1), X(2))

The provided propositions are true because the estimation of
the model parameters is consistent and the defined metric
and estimators are continuous functions from the estimated
parameters. We also note that metric (7) and the empirical
estimates (10), (11) satisfy the following triangle equations.

dPIC

(
X(i), X(j)

)
≤ d̂PIC

(
X(i),xi

)
+ d̂PIC

(
xi, X

(j)
)

d̂PIC

(
xi, X

(i)
)
≤ d̂PIC (xi,xj) + d̂PIC

(
xj , X

(i)
)

d̂PIC (xi,xj) ≤ d̂PIC

(
xi, X

(i)
)
+ d̂PIC

(
xj , X

(i)
)

III. CONSISTENT CLUSTERING OF ARMA-GARCH
PROCESSES

As a clustering function(algorithm) we will use Algorithm
1. described in [1]. Algorithm 1 takes the time series dataset
D, a number of clusters κ, and a number of maximal order
Pmax, Qmax described in Proposition 2.2. Algorithm 1 is
based on the following steps 1. For each sample xi estimate
ARMA-GARCH models with BIC penalized QML, choosing
the appropriate model from M = {(p, q) : p < Pmax, q <
Qmax} 2. For each estimated model compute the finite trunca-
tion of the infinite sequences Ψi using (3) and (4). 3. Initialize
cluster centers with farthest point initialization. 4. For each
xi, assign each label to the cluster of nearest centroid. The
following theorem, which can be proved using Proposition
2.1 and similarly as in [2] shows the strong consistency of
Algorithm 1.

Theorem 3.1 (Strong consistency of Algorithm 1): Assume
that the orders of all underlying ARMA-GARCH processes are
the same and known. Then if the target number of clusters κ is
known, then Algorithm 1 is strongly asymptotically consistent.
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The following theorem is based on Proposition 2.2 and
provides a more general framework for clustering ARMA-
GARCH processes.

Theorem 3.2 (Weak Consistency of Algorithm 1): Assume
that there given Pmax, Qmax, P

′
max, Q

′
max such that orders

of all underlying processes are mi ∈ M, and the target
number of clusters κ are known, then Algorithm 1 is weakly
asymptotically consistent. Moreover, for the given η ∈ (0, 1)
there exists n, such that if nmin = mini∈1..N ni > n, then

P (f((D, κ)) = G) ≥ (1− (N − κ)(4− 4η))(4η − 3)κ−1

IV. CONCLUSTION

In this work, we define the problem of asymptotically
consistent clustering for time series data generated by the
ARMA-GARCH processes. We define a metric in the space
of invertible ARMA-GARCH processes using AR(∞) and
ARCH(∞) representations of the ARMA-GARCH processes.
We define consistent estimators for this metric using BIC-
penalized QMLE. Finally, we employ this metric to demon-
strate the asymptotic consistency of the discussed algorithm.
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