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Abstract—The paper presents the results of research 

performance test software for capsule, convolutional and 

generative-adversarial networks as part of network 

intrusion detection system. The research was conducted 

on datasets generated from athena, dyre, engrat, grum, 

mimikatz, surtr malware source code base. As a 

mathematical apparatus for reducing the dimension of 

calculated performance test metrics, the method of 

minimizing functions by the method of indefinite 

coefficients was chosen. The simulation of the developed 

software at different iterations and visualization of the 

results was carried out. 
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I. INTRODUCTION 

When developing and deploying a network infrastructure 

(NI), an important place is occupied by the performance 

assessment of both the NI itself and its components. The 

performance of the entire NI is the sum of the performance of 

its individual components and their correct configuration. The 

network intrusion detection system (NIDS) as a component of 

NI, is a complex software and hardware complex, and 

evaluating its performance in different modes is also an 

important task. The NIDS workload is determined not only by 

the number of configuration rules (threat responses), but also 

by the degree of neutralization of these threats. In NIDS Snort 

3.0 version, there are about 220 initial rules, based on which 

signature detectors of known threats and vulnerabilities from 

the database are activated [1]. Also, for NIDS, when 

evaluating performance, it is necessary to take into account 

the type of traffic being processed (network stack) and the 

bandwidth of the interfaces on which traffic is inspected. For 

hybrid NIDS or NIDS completely built on the basis of 

machine learning (ML), due to the probabilistic nature of the 

work of these NIDS, it is possible to name the exact value of 

the required value of the hardware resource only 

conditionally, with one or another probability. This problem 

is being actively researched at this stage [2-6]. In particular, in 

[2] a set of tests is presented, how fast systems can process 

input data and produce results using a trained model on 

different hardware platforms. A reference sample has also 

been developed to allow representative testing of a wide range 

of inference platforms and use cases. But this work reflects an 

assessment of the performance of neural networks in the 

processing of sound, language, pictures, text and machine 

vision. It should be noted that the theoretical assessment of the 

algorithmic complexity of the developed software algorithm 

does not always take into account the characteristics of the 

computer system. In all cases, the source code of the software 

is the starting point of the performance research. A qualitative 

performance test for neural networks is not just one 

experiment or one digit, it is a distribution of numbers. 

The novelty of the researches lies in the performance test 

of capsule, convolutional, and generative adversarial 

networks based on malware datasets with a synthetically 

reduced dataset dimension. As a mathematical apparatus for 

reducing the dimension of calculated performance metrics, the 

method of minimizing functions by the method of indefinite 

coefficients was chosen.  

The application of this method is due to the following 

factors: 

 the method allows to reduce the dimension of the research

data without loss of representativeness, 

 the method allows binary calculation, which minimizes

errors of the first and second kind (true positive, false 

positive, true negative, false negative) of the measured 

metrics. 

II. TERMS AND DEFINITION

A. Basic concepts 

Definition 1: performance model - a model that includes 

all factors important for performance: source code, environ-

ment, input data and performance distribution [7]. 

Definition 2: «observer effect» - the influence of the 

observation process on the result [7]. 

Definition 3: Performance space in an object of study with 

a large number of dimensions, depending on many variables. 

Definition 4: Profiling - collection of characteristics of the 

program. 
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B. Basic concepts of neural  networks 

 Definition 1: Generative adversarial network (GAN) is an 
algorithm based on a combination of two neural networks, one 
of which generates an object, and the other tries to distinguish 
correct («real») objects from incorrect ones. 

 the generating network G (generator) creates (generates) 

objects of a specified structure, 

 the discriminating network D (discriminator) draws 
conclusions about the similarity of the generated and true 
objects [8-10]. 

The concept of generative adversarial networks, was invented 
in 2014 by Ian Goodfellow. 

Definition 2: A convolutional neural network (CNN) is a 
specialized type of artificial neural network that uses a 
mathematical operation called convolution instead of the 
usual matrix multiplication in at least one of its layers. The 
structure of the network is unidirectional (without feedback), 
fundamentally multi-layered [11]. 

Definition 3: Capsule neural network (CapsNet) is a type 
of neural network that models hierarchical relationships [12]. 

 
 

III. DESCRIPTION OF THE PROBLEM 

Let there be a set of measurable performance metrics: 

         (0,1) (0,1) (0,1) ( )

0 1 2, , ........ j

i                    (1) 

where,  
( )j

i  (  0,1j  -binary number) – performance metrics, 

 - multidimensional performance space. 

There is a native performance metric measurement function 
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i                             (2) 

where,  

  ( )j

i   - the output function of the measured performance 

of a single neural network, 

      - the output function of measuring the performance 

of the entire «performance space», 

1  metrics 1- request per second (RPS),  

2  metrics 2 - latency (time interval between the start and end 

of the NIDS triggering on malware), 

3  metrics 3 - throughput, (throughput of capsule, convolu-

tional and generative-adversarial networks), 

4  metrics 4 - processor and random access memory (RAM) 

utilization. The measured set of metrics  ( f ) is minimized 

using the method of minimizing the output function by the 

method of undetermined coefficients. Let there be a dataset 

f  based on measured performance metrics 
( )j

i . 

 It is necessary to reduce the dimension f  so that the 

function f  formed on the basis f  is minimized without loss 

of representativeness (function f ). 
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Equating to zero all coefficients of zero rows, we remove 

them from the system. 
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 In each equation containing minimal conjunctions, we 

equate the coefficients to zero. 
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As a result of minimization, we obtain the following 

equation:   
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As a result of minimization, the number of measured sets 

of metrics is 2.13 times less than without minimization, which 

allows us to operate with a smaller sample size when 

conducting a performance test without reducing its 

representativeness. 

                         2,13f f 
                                (3) 

IV. DEVELOPED ALGORITHM  

 

The developed algorithm is shown Fig. 1. 

 

 
 

Fig. 1. The developed algorithm 

 

Algorithm operation 

At the input of the software that performruns, the 

performance test, datasets are preliminarily reduced to the 

JSON format (JSON - Java Script Object Notation). 

Step 1: setting measurable performance metrics from the 

entire multidimensional performance space  , 

Step 2: formation of parameters of measured performance 

metrics,  

Step 3, 5, 7, 9: recursive loops of routines for comparing 

metrics. If minimization is possible, the corresponding event 

handler is activated (the value is «Yes») with a call to the 

Sympy library when the list of features for the measured 

metrics is formed. If it is impossible to minimize (the value is 

«No»), the output function is reconfigured (Step 11).  

Step 4, 6, 8, 10: measuring the performance of given metrics 

and visualizing the results, 

Step 11: generating an output function after performing a 

performance test based on the relevant metrics.  

 

Performance test description 

In a virtual environment based on the Windows Server 

2016 Standart operating system (OS) [13], the Hyper-V role 

is installed in which the Parrot OS [14] OS with the Metasploit 

framework installed and the Ubuntu v20.04 OS in which the 

Clion development environment is installed: capsule, 

convolutional and generative-adversarial networks. 

With the help of the Parrot OS obfuscated datasets malware 

athena, dyre, engrat, grum, mimikatz, surtr are gradually 

introduced. The NIDS is configured in discovery mode based 

on context triggered piecewise hashing. The introduction was 

carried out both individually and in complex data blocks of 

20, 40, 80, 128, 256, 512, 1024 bytes [15]. The OS runs on a 

software-defined networking (SDN) in a Hyper-V 

virtualization environment and is connected to a Hyper-V 

virtual network adapter in private mode. Measurements for 

capsule, convolutional and generative-adversarial networks in 

malware detection mode at different values of context 

triggered piecewise hashing were carried out for 4 types of 

metrics ( 1 2 3 4  ) at 4.    

The scheme of measuring the performance test is shown in 

Fig. 2. 

 

 
        

Fig. 2. Scheme of measuring the performance test 
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V. RESEARCH  RESULTS 

As a result of minimization, the characteristics of the 

NIDS are improved in terms of the parameters of metrics 

1,2,3,4. As a result of minimization, there is an «exchange» of 

the degree of processor utilization for the amount of occupied 

RAM. Athena, dyre, engrat, grum, mimikatz, surtr were used 

as obfuscated malware [16-19]. The visualization of the 

results of ML NIDS performance tests is shown in Fig. 3 and 

Fig. 4. Detailed performance test output of the developed 

software using TensorBoard shown is Fig. 5. 

 
Fig. 3. Visualization of the ML NIDS performance tests 

without minimization 

 

 
Fig. 4. Visualization of the ML NIDS performance tests 

using minimization 
 

 
Fig. 5. Detailed performance test output of the developed  

software using TensorBoard 

 

VI. CONCLUSIONS 

The paper considers a software model for reducing the 

dimensionality of datasets for conducting a software 

performance test using the method of minimizing the output 

functions of data sets by the method of undetermined 

coefficients. The developed software makes it possible to test 

the performance of capsule, convolutional and generative-

adversarial networks within the specified metrics. The 

performance test of the most developed performance software 

was carried out on the basis of the TensorFlow open library 

tensorflow.test.Benchmark, visualization using the 

TensorBoard plugin. 

Based on the tests carried out, we can conclude: 

Minimizing the output functions of datasets by the method 

of undetermined coefficients is justified with a predetermined 

performance space and exactly known metrics. In all cases, 

there is an increase in the performance of capsule, 

convolutional and generative-adversarial networks within the 

given metrics (regardless of the number of iterations). An 

increase in performance entails an increase in the 

consumption of hardware resources, in particular RAM. With 

a decrease in the dimension of output data sets by an average 

of 2÷2.5 times, there is an increase in RAM consumption by 

18%÷25%, but at the same time, the level of processor 

utilization decreases. Software source code and all research 

results are available at [20]. 
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