
Network Intrusion Detection System Performance

Measurement Model

Timur Jamgharyan

National Polytechnic University

of Armenia

Yerevan, Armenia

 e-mail: t.jamgharyan@yandex.ru

Abstract—The paper presents the results of research

performance test software for capsule, convolutional and

generative-adversarial networks as part of network

intrusion detection system. The research was conducted

on datasets generated from athena, dyre, engrat, grum,

mimikatz, surtr malware source code base. As a

mathematical apparatus for reducing the dimension of

calculated performance test metrics, the method of

minimizing functions by the method of indefinite

coefficients was chosen. The simulation of the developed

software at different iterations and visualization of the

results was carried out.

Keywords—Performance space, performance metrics,

machine learning, dataset, malware, network intrusion detection

system, metasploit.

I. INTRODUCTION

When developing and deploying a network infrastructure

(NI), an important place is occupied by the performance

assessment of both the NI itself and its components. The

performance of the entire NI is the sum of the performance of

its individual components and their correct configuration. The

network intrusion detection system (NIDS) as a component of

NI, is a complex software and hardware complex, and

evaluating its performance in different modes is also an

important task. The NIDS workload is determined not only by

the number of configuration rules (threat responses), but also

by the degree of neutralization of these threats. In NIDS Snort

3.0 version, there are about 220 initial rules, based on which

signature detectors of known threats and vulnerabilities from

the database are activated [1]. Also, for NIDS, when

evaluating performance, it is necessary to take into account

the type of traffic being processed (network stack) and the

bandwidth of the interfaces on which traffic is inspected. For

hybrid NIDS or NIDS completely built on the basis of

machine learning (ML), due to the probabilistic nature of the

work of these NIDS, it is possible to name the exact value of

the required value of the hardware resource only

conditionally, with one or another probability. This problem

is being actively researched at this stage [2-6]. In particular, in

[2] a set of tests is presented, how fast systems can process

input data and produce results using a trained model on

different hardware platforms. A reference sample has also

been developed to allow representative testing of a wide range

of inference platforms and use cases. But this work reflects an

assessment of the performance of neural networks in the

processing of sound, language, pictures, text and machine

vision. It should be noted that the theoretical assessment of the

algorithmic complexity of the developed software algorithm

does not always take into account the characteristics of the

computer system. In all cases, the source code of the software

is the starting point of the performance research. A qualitative

performance test for neural networks is not just one

experiment or one digit, it is a distribution of numbers.

The novelty of the researches lies in the performance test

of capsule, convolutional, and generative adversarial

networks based on malware datasets with a synthetically

reduced dataset dimension. As a mathematical apparatus for

reducing the dimension of calculated performance metrics, the

method of minimizing functions by the method of indefinite

coefficients was chosen.

The application of this method is due to the following

factors:

 the method allows to reduce the dimension of the research

data without loss of representativeness,

 the method allows binary calculation, which minimizes

errors of the first and second kind (true positive, false

positive, true negative, false negative) of the measured

metrics.

II. TERMS AND DEFINITION

A. Basic concepts

Definition 1: performance model - a model that includes

all factors important for performance: source code, environ-

ment, input data and performance distribution [7].

Definition 2: «observer effect» - the influence of the

observation process on the result [7].

Definition 3: Performance space in an object of study with

a large number of dimensions, depending on many variables.

Definition 4: Profiling - collection of characteristics of the

program.

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

251

CSIT Conference 2023, Yerevan, Armenia, September 25 - 30

https://doi.org/10.51408/csit2023_59

B. Basic concepts of neural networks

 Definition 1: Generative adversarial network (GAN) is an
algorithm based on a combination of two neural networks, one
of which generates an object, and the other tries to distinguish
correct («real») objects from incorrect ones.

 the generating network G (generator) creates (generates)

objects of a specified structure,

 the discriminating network D (discriminator) draws
conclusions about the similarity of the generated and true
objects [8-10].

The concept of generative adversarial networks, was invented
in 2014 by Ian Goodfellow.

Definition 2: A convolutional neural network (CNN) is a
specialized type of artificial neural network that uses a
mathematical operation called convolution instead of the
usual matrix multiplication in at least one of its layers. The
structure of the network is unidirectional (without feedback),
fundamentally multi-layered [11].

Definition 3: Capsule neural network (CapsNet) is a type
of neural network that models hierarchical relationships [12].

III. DESCRIPTION OF THE PROBLEM

Let there be a set of measurable performance metrics:

  (0,1) (0,1) (0,1) ()

0 1 2, , j

i     (1)

where,
()j

i ( 0,1j  -binary number) – performance metrics,

 - multidimensional performance space.

There is a native performance metric measurement function

    ()j

i    (2)

where,

  ()j

i  - the output function of the measured performance

of a single neural network,

   - the output function of measuring the performance

of the entire «performance space»,

1 metrics 1- request per second (RPS),

2 metrics 2 - latency (time interval between the start and end

of the NIDS triggering on malware),

3 metrics 3 - throughput, (throughput of capsule, convolu-

tional and generative-adversarial networks),

4 metrics 4 - processor and random access memory (RAM)

utilization. The measured set of metrics (f) is minimized

using the method of minimizing the output function by the

method of undetermined coefficients. Let there be a dataset

f based on measured performance metrics
()j

i .

 It is necessary to reduce the dimension f so that the

function f formed on the basis f is minimized without loss

of representativeness (function f).

   1 1 2 3 4, , , 0,1,2,5,8,11,14,15f V      

 2 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

4 3 2 1 4 3 2 1 4 2 2 1 4 2 2 1 4 3 2 1

, , ,f                 

                   

    

    

0 0 0 0 00 00 00 00

0 1 2 3 4 12 13 14 23
00 00 000 000 000 000 0000

24 34 123 124 134 234 1234

0 0 0 0 00 00 01 00

1 1 2 3 4 12 13 14 23
01 01 000 001 001 001 0001

24 34 123 124 134 234 1234

2

1

1

        

      

        

      



        

       

        

       

0 0 1 0 00 01 00 01

1 2 3 4 12 13 14 23
00 10 001 000 010 010 0010

24 34 123 124 134 234 1234

0 0 1 1 00 01 01 01

3 1 2 3 4 12 13 14 23
01 11 001 001 011 011 0011

24 34 123 124 134 234 1234

4

1

0

       

      

        

      

 

        

       

        

       

 0 1 0 0 01 00 00 10

1 2 3 4 12 13 14 23
10 00 010 010 000 100 0100

24 34 123 124 134 234 1234

0 1 0 1 01 00 01 10

5 1 2 3 4 12 13 14 23
11 01 010 011 001 101 0101

24 34 123 124 134 234 1234

0

6 1

0

1

      

      

        

      

 

       

       

        

       

 1 1 0 01 01 00 11

2 3 4 12 13 14 23
10 10 011 010 010 110 0110

24 34 123 124 134 234 1234

0 1 1 1 01 01 01 11

7 1 2 3 4 12 13 14 23
11 11 011 011 011 111 0111

24 34 123 124 134 234 1234

8

8 1

0

0

      

      

        

      

  

       

       

        

       

  0 0 0 10 10 10 00

2 3 4 12 13 14 23
00 00 100 100 100 000 1000

24 34 123 124 134 234 1234

1 0 0 1 10 10 11 00

9 1 2 3 4 12 13 14 23
01 01 100 101 101 001 1001

24 34 123 124 134 234 1234

1

10 1 2

1

0

     

      

        

      

  

      

       

        

       

  0 1 0 10 11 10 01

3 4 12 13 14 23
00 10 101 100 110 010 1010

24 34 123 124 134 234 1234

1 0 1 0 10 11 10 01

11 1 2 3 4 12 13 14 23
01 11 101 101 111 011 1011

24 34 123 124 134 234 1234

1

12 1 2

0

1

     

      

        

      

  

      

       

        

       

  1 0 0 11 10 10 10

3 4 12 13 14 23
00 00 110 110 100 100 1100

24 34 123 124 134 234 1234

1 1 0 1 11 10 11 10

13 1 2 3 4 12 13 14 23
11 01 110 111 101 101 1101

24 34 123 124 134 234 1234

1

14 1 2

0

0

     

      

        

      

  

      

       

        

       

  1 1 0 11 11 10 11

3 4 12 13 14 23
10 10 111 110 110 110 1110

24 34 123 124 134 234 1234

1 1 1 1 11 11 11 11

15 1 2 3 4 12 13 14 23
11 11 111 111 111 111 1111

24 34 123 124 134 234 1234

1

1

     

      

        

      

      

       

        

       

Equating to zero all coefficients of zero rows, we remove

them from the system.

252

000 000 000 0000

123 124 234 1234

000 001 0001

123 134 1234

000 0010

124 1234

001 0101

134 1234

000 1000

234 1234

111 1011

134 1234

111 1110

123 1234

111 111 1111

123 134 1234

1

1

1

1

1

1

1

1

   

  

 

 

 

 

 

  

   

  

 

 

 

 

 

  

 In each equation containing minimal conjunctions, we

equate the coefficients to zero.
111 000 001 111 000

123 124 134 134 234 1        

As a result of minimization, we obtain the following

equation:

 2 4 3 2 1 4 3 1 3 2 1 4 2 1 4 2 1 4 2 2

` , , ,f                          

As a result of minimization, the number of measured sets

of metrics is 2.13 times less than without minimization, which

allows us to operate with a smaller sample size when

conducting a performance test without reducing its

representativeness.

 2,13f f 
 (3)

IV. DEVELOPED ALGORITHM

The developed algorithm is shown Fig. 1.

Fig. 1. The developed algorithm

Algorithm operation

At the input of the software that performruns, the

performance test, datasets are preliminarily reduced to the

JSON format (JSON - Java Script Object Notation).

Step 1: setting measurable performance metrics from the

entire multidimensional performance space  ,

Step 2: formation of parameters of measured performance

metrics,

Step 3, 5, 7, 9: recursive loops of routines for comparing

metrics. If minimization is possible, the corresponding event

handler is activated (the value is «Yes») with a call to the

Sympy library when the list of features for the measured

metrics is formed. If it is impossible to minimize (the value is

«No»), the output function is reconfigured (Step 11).

Step 4, 6, 8, 10: measuring the performance of given metrics

and visualizing the results,

Step 11: generating an output function after performing a

performance test based on the relevant metrics.

Performance test description

In a virtual environment based on the Windows Server

2016 Standart operating system (OS) [13], the Hyper-V role

is installed in which the Parrot OS [14] OS with the Metasploit

framework installed and the Ubuntu v20.04 OS in which the

Clion development environment is installed: capsule,

convolutional and generative-adversarial networks.

With the help of the Parrot OS obfuscated datasets malware

athena, dyre, engrat, grum, mimikatz, surtr are gradually

introduced. The NIDS is configured in discovery mode based

on context triggered piecewise hashing. The introduction was

carried out both individually and in complex data blocks of

20, 40, 80, 128, 256, 512, 1024 bytes [15]. The OS runs on a

software-defined networking (SDN) in a Hyper-V

virtualization environment and is connected to a Hyper-V

virtual network adapter in private mode. Measurements for

capsule, convolutional and generative-adversarial networks in

malware detection mode at different values of context

triggered piecewise hashing were carried out for 4 types of

metrics (1 2 3 4) at 4. 

The scheme of measuring the performance test is shown in

Fig. 2.

Fig. 2. Scheme of measuring the performance test

253

V. RESEARCH RESULTS

As a result of minimization, the characteristics of the

NIDS are improved in terms of the parameters of metrics

1,2,3,4. As a result of minimization, there is an «exchange» of

the degree of processor utilization for the amount of occupied

RAM. Athena, dyre, engrat, grum, mimikatz, surtr were used

as obfuscated malware [16-19]. The visualization of the

results of ML NIDS performance tests is shown in Fig. 3 and

Fig. 4. Detailed performance test output of the developed

software using TensorBoard shown is Fig. 5.

Fig. 3. Visualization of the ML NIDS performance tests

without minimization

Fig. 4. Visualization of the ML NIDS performance tests

using minimization

Fig. 5. Detailed performance test output of the developed

software using TensorBoard

VI. CONCLUSIONS

The paper considers a software model for reducing the

dimensionality of datasets for conducting a software

performance test using the method of minimizing the output

functions of data sets by the method of undetermined

coefficients. The developed software makes it possible to test

the performance of capsule, convolutional and generative-

adversarial networks within the specified metrics. The

performance test of the most developed performance software

was carried out on the basis of the TensorFlow open library

tensorflow.test.Benchmark, visualization using the

TensorBoard plugin.

Based on the tests carried out, we can conclude:

Minimizing the output functions of datasets by the method

of undetermined coefficients is justified with a predetermined

performance space and exactly known metrics. In all cases,

there is an increase in the performance of capsule,

convolutional and generative-adversarial networks within the

given metrics (regardless of the number of iterations). An

increase in performance entails an increase in the

consumption of hardware resources, in particular RAM. With

a decrease in the dimension of output data sets by an average

of 2÷2.5 times, there is an increase in RAM consumption by

18%÷25%, but at the same time, the level of processor

utilization decreases. Software source code and all research

results are available at [20].

REFERENCES

[1] Official website of intrusion detection and intrusion prevention system

Snort. [Online]. Available: https://www.snort.org

[2] Vijay Janapa Reddi, Christine Cheng et al. MLPerf Inference

Benchmark.[Online].Available: https://arxiv.org/abs/1911.02549

[3] V.Kustikova, E.Vasiliev et al. DLI: Deep Learning Inference

Benchmark.[Online].Available:

https://link.springer.com/chapter/10.1007/978-3-030-36592-9_44

[4] G.Cheng,H,Yuan et al: Towards Large-Scale Small Object

Detection:Syrvey and Benchmarks

 [Online].Available: https://arxiv.org/abs/2207.14096
[5] Y.Shen,L.Wang et al: An Interpretability Evaluation Benchmark

for Pre-trained Language Models

 [Online].Available: https://arxiv.org/abs/2207.13948
[6] S.Pontes-Filho et al: Towards the Neuroevolutional of Low-level

Artifical General Intelligence.

 Online]. Available: https://arxiv.org/abs/2207.13583
[7] A.Akinshin, Pro. NET Benchmarking, The Art of Performance

Measurement, first edition (2019) // 576, АPRESS®

[8] Ian J.Goodfellow,J.Pouget-Abadie, M. Mirza, B.Xu, D.Warde-
Farley,S.Ozair, A. Courville,Y.Bengio. Generative Adversarial
Networks. [Online]. Available:https://arxiv.org/abs/1406.2661

[9] A. Gad. Fatima E. Jarmouni. Learning and Neural Networks with
Python™. A Practical Guide. ACADEMIC PRESS. Elsevier, 2021

[10] R.T.Kneusel. Practical Deep Learning. A python – based introduction.
San Francisco. 2021

[11] L.Stefan,V. Fjodor. (2020). The Neural Network Zoo. Proceedings.
47. 9. 10.3390/proceedings47010009.

[12] G.Hilton, S.Sabour, N,Frosst, «Matrix Caplsules with EM

Routing»,(2018), https://research.google/pubs/pub46653/

[13] Microsoft official site. Windows Server 2016 Operating System
Download Page [Online].Available: https://www.microsoft.com/en-
us/evalcenter/download-windows-server-2016

[14] Parrot OS official site. Parrot OS Operating System Download Page

[Online].Available: https://www.parrotsec.org/

[15] T. V. Jamgharyan, «Research of Obfuscated Malware with a Capsule
Neural Network». Mathematical Problems of Computer Science, vol.
58, pp.67–83. 2022.

[16] Malware database. [Online]. Available http://vxvault.net/ViriList.php

[17] Malware repository. [Online]. Available https://avcaesar.malware.lu/

[18] Viruses repository. [Online]. Available: https://virusshare.com/

[19] Malware repository. [Online].

Availablehttps://github.com/ytisf/theZoo
[20] Software source code and all research results.
 [Online].Available: https://github.com/T-JN?tab=repositories

254

https://www.snort.org/
https://arxiv.org/abs/1911.02549
https://link.springer.com/chapter/10.1007/978-3-030-36592-9_44
https://arxiv.org/abs/2207.14096
https://arxiv.org/abs/2207.13948
https://arxiv.org/abs/2207.13583
https://arxiv.org/search/stat?searchtype=author&query=Goodfellow%2C+I+J
https://arxiv.org/search/stat?searchtype=author&query=Pouget-Abadie%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Mirza%2C+M
https://arxiv.org/search/stat?searchtype=author&query=Xu%2C+B
https://arxiv.org/search/stat?searchtype=author&query=Warde-Farley%2C+D
https://arxiv.org/search/stat?searchtype=author&query=Warde-Farley%2C+D
https://arxiv.org/search/stat?searchtype=author&query=Ozair%2C+S
https://arxiv.org/search/stat?searchtype=author&query=Courville%2C+A
https://arxiv.org/search/stat?searchtype=author&query=Bengio%2C+Y
https://arxiv.org/abs/1406.2661
https://research.google/pubs/pub46653/
https://www.microsoft.com/en-us/evalcenter/download-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/download-windows-server-2016
https://www.parrotsec.org/
http://vxvault.net/ViriList.php
https://avcaesar.malware.lu/
https://virusshare.com/
https://github.com/ytisf/theZoo
https://github.com/T-JN?tab=repositories

