
Data Servers in Parallel Processes and Caper Language
Paradigms

Abstract—The paper is devoted to the issues of constructing
data servers by means of the Caper language for individual
applications. The problems arising in this case and schemes for
their solutions by creating data attributes and forming reentrant
procedures are considered. The results of studies on implanting
the mechanism for assigning attributes at the level of the
compiler and virtual machine are presented.

Keywords—Parallel computing, application data servers,
data engineering.

I. INTRODUCTION
 In [1], a virtual machine (VM) of the Caper language was
described with the ability to distribute it across processor
cores and OS threads, allowing over a million parallel
processes to be executed simultaneously in one application
(estimated at up to 1.5 million with two-gigabyte RAM
addressing on one computer with 8 32-bit cores (16 threads)).
The article is devoted to the language paradigms for creating
internal application data servers that provide simultaneous
requests from different processes for placing, using, and
deleting data. The problems of implementing controlled
access and data transformations by means of object-oriented
programming methods and ways of organizing controlling
actions at the stage of program compilation.

II. PROBLEMS OF MANAGING COMMON DATA
 Due to the ability of applications created on Caper to work
with different data structures simultaneously, the task of
organizing internal data servers with controlled access to them
has arisen. Traditional solutions in modern OSes, as a rule,
rely on the creation of monitors/mutexes in applications in
other languages, registering them in the OS environment, with
the help of which the problems of monopoly access to data are
solved. Addressing a mutex that manages a shared resource
causes suspension of processes, including those from other
applications (in cases when the mutex belongs to the OS), that
address already executed mutexes, which, of course, delays
their execution due to delayed calls. A certain solution for
control and access to data has been present in the Caper
language since the first versions [2] and is supported by the
mechanism of so-called variables with status, called “place
variables”, which are formed by a pair (status, regular
variable). Due to certain inconveniences and limitations of

variable locations, difficulties in compilation and control by
the virtual machine, the topic of sharing data from multiple
parallel procedures, and even those located in different
modules, had to be addressed again, especially in the context
of significantly expanded language capabilities. A special
place here belongs to composite data, which require control
over the descriptors of its entire composition as well as its
separate elements. These include lists containing
heterogeneous data whose elements can be created and added
to the list by different procedures from different parallel
processes.

III. SOLUTION SCHEMES

 The basic idea to resolve common data usage issues is to
create proprietary and application internal data servers that are
out of the control of the OS. The Caper language, whose VM
has its own mechanisms of generating parallel processes
“lighter than light” and also the property of modularity with
possibilities of dynamic loading and unloading of modules in
the process of calculations, seems to be a particularly
convenient tool for solving the mentioned problems.
Moreover, Caper modules can only be data carriers, acting as
their own structured pages of application memory. That is,
creating one or more modules that service multiple parallel
processes within a single application is a fairly natural
structure that does not affect the OS mechanisms, and,
therefore, excludes any indirect impact on other applications.
Caper's modularity allows you to create multiple copies of the
same data server to service selected groups of processes. In
Caper servers, the problem of servicing multiple requests is
removed by the actual reentrancy of the servicing procedures,
since they are implemented by receiving parameters and
asynchronously launching a parallel process for implementing
actions.

block CreateData (parm1, . . .) ;* Procedure with parameters
created with each call
do asynch CreateDataProc(parm1, . . .) ;* Call of parallel
process of creating data
endblock ;* Logical bracket of procedure description
termination

That is, in this case, each call will correspond to its own
process of creating data. Such a procedure is trivially
reentrant. A similar thing (using “wrapper” procedures as in

 Sergey Vartanov
The Institute for Informatics and

Automation Problems of NAS RA
Yerevan, RA

e-mail: s.vartanov@iiap.sci.am

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_21 93

the examples) is organized for other data actions, in particular,
for calling processing procedures:

// Search procedure with parameters
block SearchData (parm1, . . .)
do asynch SearchDataProc(parm1, . . .) ;* Call of parallel
search process with the next call
endblock ;* Logical bracket of procedure description
termination etc.

 The bottleneck here is the direct transformation of the data,
which requires special attention. Such problematic ones
include list modification: insertion of an element, deletion and
addition of an element, since structural changes imply the
formation of pointers of links between elements. Simultaneity
in this case is simply excluded and solved by monopolizing
actions. Caper has the appropriate tools in the form of critical
sections and special-type procedures. Let us emphasize:
reentrancy of calls in the Caper language is solved by calling
parallel processes, which is much simpler, “lighter” than
lightweight processes in the OS.

IV. DATA ATTRIBUTES
 Among the most integrated in terms of access
controllability and transformations are list structures of
heterogeneous data, whose elements are carriers of values or
references to values, and generated by different concurrent
procedures (the most capacious type of data in terms of variety
is marked). The solutions for them extend to other data types
in truncated forms as well. Thus, to control the data, a
mechanism of attributing the following attributes to each
element of the list, as well as to the whole list (partly, it is a
variant of file attribute assignments accepted in OS file
systems) has been investigated and proposed:

• data owner/creator indication;
• indication of status: access to other procedures and

parallel processes is allowed or not;
• indication of permissible actions for other

procedures and parallel processes: read only, write
only, read/write.

The controlling link of the list (structure - list descriptor) is
supplemented with attributes that indicate the possibilities of
applying certain procedures, such as searching for values,
adding, deleting, or inserting elements into the list, sorting,
merging, creating list maps (map), and others. All of the above
are represented by describing structures of both the list and its
elements, whose members are carriers of attribute values,
together with members that are pointers to the next element
(and to the previous one in the case of bidirectionality), of the
element's value. Such an organization is currently
implemented in a separate module - a server for creating,
managing access to lists and their elements, various types of
search procedures and transformations. Here, a similar, but
greatly simplified solution suggests itself for creating a server
for managing arrays with fixed and floating boundaries. This
was also implemented in a separate module. Let us note
another property that allows for full control: the language
virtual machine can provide any procedure with information
about who called it (from which procedure and which
process), in which module the calling procedure is located.
This allows for access to data and procedures to be

differentiated based on these characteristics: each procedure
call can begin with a request to the VM “Who called it and
from which module?”

V. IMPLEMENTATION OF VARIABLE ATTRIBUTE
ASSIGNMENT SYSTEMS

 During the research, the question was raised about the
possibilities of providing variables of all types and kinds (or
some of them) with control attributes. Two approaches were
considered: the traditional one, based on long-accepted and
tested methods of object-oriented languages, and the second
one, associated with an attempt to provide the operators of
data construction [3] of the Caper language with the
assignment of responsibilities for the formation of the above
attributes and the implementation of control procedures to the
compiler and virtual machine. The reasons are clear: at the
compiler level, there is a possibility to control the correctness
of variable (data) usage, at the virtual machine level, there is
a possibility to create a uniform support of data control and
transformation by VM means, or, at least, the introduction of
restrictions on the procedural maintenance of data. The
analysis has shown that such means do not bring any special
advantages, and in some cases narrow the possibilities of
programming.

REFERENCES
[1] С. Р. Вартанов, “Распределение вычислений для

многоядерных/многопроцессорных вычислителей на основе
системы виртуальных машин языка параллельного
программирования Caper”, Параллельные вычислительные
технологии – XV международная конференция, ПаВТ'2021,
г. Волгоград, с. 176–185, 2021.

[2] C. Р. Вартанов, “Язык программирования CAPER”, Препр. 97-5,
Национальная Академия Наук Украины, Институт Кибернетики
им. Глушкова, Киев, 29 c., 1997.

[3] C. Р. Вартанов, “Методы конструирования и сопровождения
данных средствами языка параллельного программирования
Caper”, Труды 4-ой международной конференции “Параллельные
вычисления и задачи управления”, PACO-2008, Москва, c. 1268-
1288, 2008.

94

	I. Introduction
	II. PROBLEMS OF MANAGING COMMON DATA
	III. SOLUTION SCHEMES
	IV. DATA ATTRIBUTES
	V. IMPLEMENTATION OF VARIABLE ATTRIBUTE ASSIGNMENT SYSTEMS
	References

