CSIT Conference 2025, Y erevan, Armenia, September 22 - 26

Triggering Data Races in Multi-Threaded Programs
Using Enhanced S2E

Egor Kutovoi
MIPT
Moscow, Russia
e-mail: kutovoi.ea@phystech.edu

Abstract—Most critical software used and developed today
is built with the use of multiple threads, which is quite
complicated to get right. This leads to a prevalence of bugs
related to concurrency, such as data races. In addition to that,
current technological trends include robotics and unmanned
vehicle software, which is not only multi-threaded but also made
more complicated since it interacts with hardware, requires a
specific OS environment, utilizes IPC, and must be rigorously
tested. In this paper, we build on top of a multi-core version
of S2E and provide an algorithm designed to improve the
capabilities of detecting data race bugs in programs running
in complicated environments. To achieve this, we utilize S2E’s
full-system emulation, its plugin system, and the CPU core
scheduler from our fork.

Fedor Niskov

MSU, ISP RAS

Moscow, Russia
e-mail: fedor.niskov@ispras.ru

Keywords—S2E, full-system emulation, symbolic execution, ;

multi-threading, race detection.

I. INTRODUCTION

The complexity of software used and developed is steadily
increasing. This can be attributed to the fact that the functional
requirements for software are expanding. For example, the
demand for highly functional robots and unmanned vehicles
is rising. With it, more and more complex software is being
developed, which in turn uses new, more efficient hardware,
but at the same time harder to handle correctly. Hence, more
possibilities for bugs to occur. In particular, this includes multi-
core processors and in tandem multi-threaded programs. A
substantial number of bugs in multi-threaded programs can
be categorized as data race bugs. A data race is said to occur
when at least two threads try to access the same shared variable
without synchronization and at least one of those accesses is
a modification. Due to the inherent complexity that comes
with multi-threading, detecting and debugging data races is
not an easy task. Because of this, many tools have been
developed to help developers find data race bugs. The most
notable among them is the famous TSan [1]. However, it is
not a perfect solution and does have its limitations. In this
paper, we present an algorithm that, given a program built
with TSan, collects an original non-failing trace, analyzes it,
and constructs an instruction schedule that triggers TSan. We
implement our algorithm within our enhanced S2E [2]. It is
capable of executing programs within a full-system multi-
core emulated environment. By building upon this technology,
we can find data race bugs in complex real-world software,
including robotics and unmanned vehicles firmware [3].

https://doi.org/10.51408/csit2025 42

Shamil Kurmangaleev ISP
RAS
Moscow, Russia
e-mail: kursh@ispras.ru

II. LIMITATIONS OF TSAN

TSan is a dynamic data race detector. It works by in-
strumenting the target program at compile time, inserting
runtime checks near all memory access operations. Memory
accesses are evaluated with an efficient algorithm that checks
whether the current access races with some other memory
access operation. It does this through an algorithm based on
the idea of a Happens-Before relation [4]. Let us examine a
straightforward example:

int x
int y =

0;
0;

3l std: :mutex mutex;

void Threadl () {
y = 1;
{
std::lock_guard lock (mutex);
x += 1;

}

3l void Thread2 () {

{
std::lock_guard lock (mutex) ;
x += 1;

+= 1;
}

Listing 1: Program containing race, not always detectible by
TSan

Here, there are 2 shared variables: x and y. Accesses to x
are protected by a mutex, but accesses to y are not. Hence, this
program contains a data race bug. However, it manifests only
when Thread?2 is scheduled before Threadl. If the ordering of
execution is the other way around, then, as per the definition
of Happens-Before, accesses to y are not in a race due to
the intra-thread synchronization provided by the mutex and
program order. As such, TSan [1]] would not trigger.

III. RELATED WORK

Before proceeding to explain our algorithm, let us review
the existing approaches for detecting data races in programs.
As with any program behavior analysis problem, for data
race detection, there exist 3 main approaches: static analysis,
when the code is checked without execution; dynamic analysis,
when all checks are done during the program’s execution; and

171

hybrid approaches that combine the two. Dynamic analysis
is definitely the most widely used approach. Tools utilizing
dynamic analysis can be further categorized into 3 types:
Happens-Before based (DJIT+ [5]]), Lock-Set based (Eraser
[6], Goldilocks [7]), or a hybrid of the two (TSan [1],
Helgrind+ [8]]). In our work, we focus on integrating with
TSan, in particular, as it is very widely applicable, has been
used in production environments for a considerable amount of
time, and is quite robust in its detection capabilities. Despite
that, TSan, being a dynamic analysis tool, only considers
one trace of execution and won’t report any bugs that do
not reproduce in that particular trace. Our algorithm utilizes
both dynamic and static analysis, so it fits into the hybrid
category. Considerable research has already been performed
in this direction. Most notably, tools like CLAP [9] for
simplifying reproduction of data race bugs, Portend [[10] for
categorizing and simplifying debugging, and Cortex [11]] for
finding data race bugs given input of production traces. In
all of these works, Happens-Before constraints are encoded
as predicates and solved via an SMT solver, similar to our
approach. However, no tools exist that are capable of finding
new data race bugs in a full-system emulated environment,
like in our work. In our previous work [2]], we have used S2E
[12] and enhanced it with support for emulating multi-core OS
environments to improve its capabilities for detecting races in
multi-threaded programs. In this paper, we build upon these
changes and present an algorithm that encourages data races
to occur. It utilizes the fact that we can precisely control the
execution flow of different emulated CPU cores.

IV. RACE FINDING ALGORITHM

A. Idea

In our algorithm, we consider memory read and write
instructions to shared variables and mutex lock/unlock opera-
tions. Using S2E’s plugin system, we intercept the instructions
and record the trace. After the trace is fully recorded, we try
to change the order of the instructions to find a schedule
that would trigger a data race detector, while preserving
the existing Happens-Before relations between instructions.
To compute the desired order of instructions, we construct
predicates and solve them using an SMT solver, Z3 [13] in
our case. To keep the computation requirements reasonable,
we split the full trace into manageable segments and try to
construct an isolated predicate for each particular segment.
Each segment is processed in sequence, and if for some
segment, we get a satisfiable model, we stop checking further
segments. At this point, we dump all of the unchanged trace
segments up to the last checked segment, and the reordered last
segment. Lastly, we execute the target program for the second
time, but now we use the computed schedule within the CPU
scheduler, which guides the execution. It should be noted that
we run the target program in an environment where each thread
is bound to one CPU core exclusively, so the terms “thread”
and “core” are mostly interchangeable for our purposes. The
program is expected to be built with TSan [1]] instrumentation,

which then detects the race when it eventually gets triggered.
The general flow of the algorithm is as follows:

1) Run the target program inside of S2E while recording
the original schedule of instructions S

2) Split the full schedule into manageable segments
51 ...8m, for each segment s;:

a) Build a predicate for computing a schedule that
would trigger a data race

b) Try to solve the predicate and construct the re-
ordered segment s

c) If it is satisfiable, then save the new schedule S’
consisting of segments s ...s;—1, s,

3) Run the target program inside S2E for the second time,
but guide the execution according to the computed
schedule S’.

Let’s examine the structure of a predicate constructed in 2.a.
Its purpose is to find a permutation of the instructions in the
original trace that would trigger a data race, if it is theoretically
reachable. As inputs, it takes a set of variables p(i;) that define
a permutation of a set of instructions {i;...i,}. Then, we
encode the satisfaction of all Happens-Before relation proper-
ties and encode the existence of a data race. In particular, the
predicate is a conjunction of 4 parts:

1) Ppermutation: Requirements for p(i;) to be a valid

permutation

2) P.ore—order: Enforcing that the order of instructions
withing each core is the same as in the original schedule

3) Pputer: Enforcing that the synchronization provided by
mutexes is accounted for

4) P,qces: Postulating that the segment contains a data race

The computed trace S’ is similar in spirit to a combination
of a path predicate and a security predicate:

o Path predicate consists of the unchanged traces

S1...8;—1, parts of the predicate used for constructing
3;: Ppermutationa Pcore—order’ Pmutem

o And the security predicate is the last part of the predicate

for si: Praces

Here’s how the algorithm would perform on the example
given in the beginning:

Sample Run of the Algorithm

Step Original Computed Ci

Cl : Read y Cl : Read y Uncontended read stays first.

1

2 CI : Write y C2 : Lock M

3 C1 : Lock M C2 : Read x Core 2’s critical section is moved up.

4 CI : Read x C2 : Write x :

5 C1 : Write x C2 : Unlock M

6 CI1 : Unlock M C2:Read y

7 C2: Lock 1 CT: Write y Data Race.

8 C2 : Read x C1 : Lock M

Kl C2 : Write x Cl : Read x Original order resumes for Core 1’s critical section
10 [C2: UnlockM | CI: Wiite x & sume ; ; :
11 C2 :Read y CI : Unlock M

12 C2 : Write y C2 : Write y Final write is now isolated.

Now, let us move on to the next section and formally define
how predicates are constructed.

B. Definitions

Firstly, let us define a Happens-Before relation, introduced
in [4]. For our purposes, we will be using a definition in terms

172

of instructions executed on the CPU cores of a processor.
Each instruction can be one of 4 types: read, write, mutex
lock or mutex unlock. Let I be a set of instructions. Let C
be a set of CPU cores that execute instructions. Every ¢ € 1
is executed by some ¢ € C. We denote this by C(i) = c.
Let T = {Read, Write, Lock,Unlock} be a set of allowed
instruction types. Every ¢ € I has a type ¢t € T. We denote
this by T'(i) = ¢. Let M be a set of messages passed between
instructions. Each message is an action of synchronization
between CPU cores. For our purposes, we have only one case
of synchronization: a mutex lock being taken after a preceding
mutex unlock. Happens-Before is a strict partial order relation
on the set of instructions, where each instruction is of some
type and is executed by some CPU core. The definition is as
follows: Let i1,40,i3 €I, ¢c1,c0 € C, m e M

Happens-Before(iy, i2) = HB(i1, i2)

The following properties hold:

1) If C(i1) = C(i2) and i1 came before i3, then HB(i1, i2)

2) If the event ¢; is the action of sending a message M and
19 is the action of receiving the message, then HB (41, i2)

3) If HB(Zl,’LQ) and HB(ZQ, 23), then HB(Zl, 23)

4) —HB(41,11)

5) If HB(i1,i2), then —~HB(i2,41)

With this in mind, we can then define what it means when

2 instructions race with each other:

Races(i, i2) = R(iz,i2) <= T'(i1),T(i2) € {Read, Write}
AWrite € {T(i1),T(i2)}
/\ﬁHB(il, ig) AN ﬁHB(Z’Q, il)

To define the algorithm, we will need a few more definitions.
Let us cover them now. Let I = {41 ...4;...i,} be a list of
instructions in the order in which they appeared in the original
instruction schedule. Let C = {¢; ... cn } be the set of all CPU
cores. Let A be the set of memory addresses that are associated
with instructions. For an instruction ¢ € I and an address a €
A, we denote A(i) = a if instruction ¢ is associated with the
address a. If T'(i) € {Read, Write}, A(i) has the meaning
of an address being accessed by the instruction. If T'(i) €
{Lock,Unlock}, then A(4) has the meaning of the address of
the mutex being accessed by the instruction. For instructions
ij,i, € Ilet p(i;) = k mean that the target permutation p will
contain the instruction 4; in the k-th place.

C. Prerequisite

For each given mutex encountered in the schedule, the
number of lock and unlock operations on it must be equal.

D. Predicate definition

The goal is to compute the final predicate P. The final
predicate is composed of a set of intermediate predicates.
For each intermediate predicate, we will give a mathematical
definition for constructing it. These definitions then easily
translate to C++ code utilizing the Z3 C++ library [14].

P = Ppermutation A Pcoreforder A Pmutem A Pr’aces

Let us now formulate how each intermediate predicate is
defined.

1) Ppermutation: Encodes the requirements for a permuta-
tion. A permutation is a function that maps a list to a list where
each value is unchanged, but may be reordered. As such, it
can be encoded as an array of integers, where a value p(i;)
encodes an index where the value i; will be placed in the
resulting reordered list. And thus to enforce that p(i;) is a
valid permutation, we must require that every value is distinct
and bounded by the size of the array.

Ppermutation = (Vj, k€ 1...n,i # k : p(i;) # p(ix))
ANVjel...n:1<p(ij) <n)

2) P.ore—order- Prohibits mixing the order of instructions
withing each core, thereby ensuring property 1 of the Happens-
Before relation. To encode this, we consider all instructions
for a specific core in the order in which they appeared initially
and require that they stay ordered in the same way. And we
do this for each core.

Pcore—order =Vl e 1]\[7
Vj,kel...n,

(7 <k),
(ﬂﬂhe1...n:j<h<k,0(ih)=cl),

(C(ij) = Clix) = a) :
pliz) < p(ir)

3) Putes: Ensures mutex locks and locks constitute a
synchronization, and, thus, ensures property 2 of the Happens-
Before relation. We do this for each existing mutex indepen-
dently. Firstly, we count how many lock-unlock pairs there are
for a particular mutex. If only one pair exists, then this mutex
has not done any meaningful synchronization for the trace
segment considered now, and we can skip it. If there is more
than one pair, due to how mutexes work, all operations on it
would be ordered like so: Lock — Unlock — - -- — Lock —
Unlock. If the total number of Unlock operations is M, then
there are M — 1 Unlock operations that have a corresponding
Lock operation following them. Since we can’t deduce which
exact Unlock operations have a Lock, we encode a predicate
for each, but require only M — 1 of them to be satisfied.

173

n

Mutex-Op-Count,, = Z(A(ZJ) =a) A (T(i;) = Unlock)

j=1
Punlock»has—lock,j = (T(Z]) = U?’LlOCk) y
dkel...n,

(T(ik-) = Lock A A(Zk) = A(Z])) :
p(i;) < plix)
Sync-Ops, =#{
jliel...n:
Punlock-has—lock,j A A(Z]) =a
}
Prutes,a =(Mutex-Op-Count, = 1V
Sync-Ops, = Mutex-Op-Count, — 1)
Prutes =Va € A3i € 1: T(i) = Lock A Ppytes.a
4) P,.ces: Postulates that the schedule will contain a race
as per the definiton. Here we utilize the fact that 2 instructions
executing on different cores do not have an HB relation <=
they can be reordered sequentially. This is true because we
consider only mutexes as synchronization primitives.
Proces =Vj€l...n,Vkel...n,
T(ij), T(ix) € {Read, Write},
Write € {T'(i;), T (ix)},
C(ij) # Clix) :
p(ij) = p(ix) + 1V p(ix) = p(i;) + 1
V. TESTING

We have tested our algorithm on sample ROS2 applications
injected with bugs, all running in a fully-emulated environment
inside S2E. For our tests, we were using ROS2 kilted on
Ubuntu 24.04.

Tests summary

Name TSan finds Our algorithm Description
bug finds bug
publishers No Yes 2 parallel publishers
subscribers No Yes 2 parallel subscribers and
1 publisher
service_callers No Yes 1 service and 2 parallel
callers

VI. CONCLUSION

Thus, we have presented our algorithm for triggering data
races in S2E. It utilizes a full-system multi-core emulator
and a controllable CPU core scheduler to quickly trigger
rare data races that otherwise could have stayed undiscov-
ered by traditional data race checkers, such as TSan. Our
algorithm integrates into our S2E fork and works alongside
some dynamic race checker. And we have successfully tested
our solution with sample buggy ROS2 applications. Several
improvements can be made to this idea, such as supporting
more synchronization primitives and more thorough integra-
tion with the symbolic engine. We believe that the usage of
symbolic execution in conjunction with full-system emulation

is a perspective research direction for finding data races in real-
world software. This work outlines the possibilities of it, and
we are inspired to continue working in this direction further.

REFERENCES

[1] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer:
Data race detection in practice,” Proceedings of the
Workshop on binary instrumentation and applications,
pp. 62-71, 2009.

[2] F. V. Niskov, E. A. Kutovoy, and S. F. Kurmangaleev,
“Enhanced s2e for analysis of multi-thread software,”
Program. Comput. Softw., vol. 49, no. Suppl 1, S39—
S44, 2023.

[3] “The robot operating system.” (2025), [Online]. Avail-
able: |https://www.ros.org/.

[4] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,” Communications of the ACM,
vol. 21, no. 7, pp. 558-565, 1978.

[5] E. Pozniansky and A. Schuster, “Efficient on-the-fly
data race detection in multithreaded c++ programs,”
SIGPLAN Not., vol. 38, no. 10, pp. 179-190, 2003.

[6] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson, “Eraser: A dynamic data race detector for
multithreaded programs,” ACM Trans. Comput. Syst.,
vol. 15, no. 4, pp. 391411, 1997.

[7]1 T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: A
race-aware java runtime,” Commun. ACM, vol. 53,
no. 11, pp. 85-92, 2010.

[8] A. Jannesari, K. B., V. Pankratius, and W. F. Tichy,
“Helgrind+: An efficient d ynamic race d etector,” 2009
IEEE International Symposium on Parallel Distributed
Processing, pp. 1-13, 2009.

[9] J. Huang, C. Zhang, and J. Dolby, “Clap: Recording

local executions to reproduce concurrency failures,”

SIGPLAN Not., vol. 48, no. 6, pp. 141-152, 2013.

B. Kasikci, C. Zamfir, and G. Candea, “Data races vs.

data race bugs: Telling the difference with portend,”

SIGPLAN Not., vol. 47, no. 4, pp. 185-198, 2012.

N. Machado, B. Lucia, and L. Rodrigues, “Production-

guided concurrency debugging,” SIGPLAN Not.,

vol. 51, no. 8, 2016.

V. Chipounov, V. Kuznetsov, and G. Candea, “S2E:

A platform for in-vivo multi-path analysis of soft-

ware systems,” ACM SIGPLAN Notices, vol. 46, no. 3,

pp. 265-278, 2011.

L. De Moura and N. Bjgrner, “Z3: An efficient smt

solver,” Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Sys-

tems, ser. TACAS’O8/ETAPS’08, Budapest, Hungary:

Springer-Verlag, pp. 337-340, 2008.

“Z3 c++ api.” (2025), [Online]. Available: https://

z3prover.github.io/api/html/namespacez3.html,

[14]

174

https://www.ros.org/
https://z3prover.github.io/api/html/namespacez3.html
https://z3prover.github.io/api/html/namespacez3.html

	Introduction
	Limitations of TSan
	Related Work
	Race Finding Algorithm
	Idea
	Definitions
	Prerequisite
	Predicate definition
	Ppermutation
	Pcore-order
	Pmutex
	Praces

	Testing
	Conclusion

