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Abstract—This article introduces a method for checking 
program control flow path feasibility through symbolic 
execution. We present an automatic symbolization approaches 
that target these important parts: variables with unknown 
values, function arguments and return values, and pointer-
referenced memories. The proposed techniques make symbolic 
execution more practical for software testing and verification. 
We also introduce an algorithm for program control flow path 
verification that utilizes the mentioned enhancements. As the 
symbolic execution is a resource-demanding process, the path 
verification algorithm eliminates redundant program branches. 
This feature is integrated into a static analysis tool for more 
accurate analysis. 

Keywords—Symbolic execution, automatic symbolization, 
program path feasibility. 

 

I. INTRODUCTION  
In the modern world, where software systems play a 

crucial role, ensuring software security and reliability is 
essential. As the systems grow in complexity and size, there 
is an urgent need for automated software analysis tools. One 
of these techniques is symbolic execution. Symbolic 
execution [1] is a program analysis technique that interprets a 
program's execution using symbolic values instead of 
concrete inputs. It explores multiple execution paths 
simultaneously by treating input variables as symbolic values. 
This approach can help identify potential bugs, vulnerabilities, 
and edge cases that traditional testing methods might miss. 
Symbolic execution is useful for automated test generation, 
program verification, and vulnerability detection in software 
systems. However, its practical application is often limited by 
scalability issues, path explosion, environment modeling, and 
difficulties in handling complex program structures. 

This paper focuses on source code symbolic execution for 
C and C++ languages. Here are some of the most well-known 
symbolic execution tools for the C and C++ languages. 

EXE [2] is a symbolic execution tool for the C language 
designed for comprehensive testing of complex software. 
EXE models memory with bit-level accuracy. This is needed 
because code often treats memory as untyped bytes and 
observes a memory location in multiple ways. EXE's 
performance is based on its ability to resolve constraints 
rapidly. This speed is achieved through various optimizations. 
EXE utilizes its custom-built constraint solver, STP [3]. 

Additionally, several higher-level optimizations are 
employed, including caching mechanisms and the removal of 
irrelevant constraints. 

KLEE [4] [5] is a redesign of EXE, designed for C and 
C++ languages, built on top of the LLVM compiler [6] 
infrastructure. It interprets a program’s LLVM IR.  Like EXE, 
KLEE models memory with bit-level accuracy and employs a 
variety of constraint-solving optimizations. One of the key 
improvements of KLEE over EXE is its ability to store a much 
larger number of concurrent states. Another important 
improvement is its enhanced ability to handle interactions 
with the outside environment— for example, with data read 
from the file system or over the network—by providing 
models designed to explore all possible interactions with the 
outside world. KLEE also uses different constraint solvers, 
STP and Z3 [7]. 

Despite KLEE being a state-of-the-art tool for symbolic 
execution, it suffers from major limitations: 

• Need for manual specification of which inputs 
should be treated as symbolic: According to the 
C/C++ language standard, if memory is uninitialized, 
its value in most cases is undefined. In other words, 
such memory can contain any value. For example, 
non-static local variables, uninitialized dynamic 
memory, etc.. KLEE has no mechanism for 
automatic symbolization in such cases.  

• The entry function must be main or have no 
arguments: Sometimes, there is a need to start the 
symbolic execution from a specific function. For 
example, when a library function must be executed 
symbolically. 

• Non-effective handling of symbolic pointers: If 
there is a symbolic pointer in a program, KLEE tries 
to match the symbolic pointer with the existing 
objects of the program. This approach has several 
disadvantages. In real-life programs, a symbolic 
pointer can match numerous objects, creating new 
execution states, increasing the execution time and 
memory of symbolic execution. Also, the creation of 
new states can lead to a path explosion. 

• Dynamic behavior: During the processing of the 
called function, KLEE checks whether the called 
function exists in the current module. If it does not 
exist, there are three available options: 
o None - No external function calls are permitted. 
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o Concrete - Only external calls with concrete 
arguments are permitted. 

o All - All external function calls are permitted. 
To summarize this part, we can say that if there is an 

external call, KLEE cannot continue the symbolic execution 
or will execute the called external function dynamically, 
which leads to the dynamic behavior of the execution. It is a 
major limitation for large-scale project analysis. 

This work aims to address the mentioned challenges by 
developing advanced methods and algorithms that can 
significantly increase the effectiveness of symbolic execution 
in real-world software analysis scenarios. All proposed 
improvements are designed with the ultimate goal of enabling 
fully automatic path feasibility analysis. 

The rest of this paper is organized as follows. In Sections 
II and III, we describe the automatic symbolization of 
variables with unknown values, function arguments, and 
return values. Section IV shows the automatic symbolization 
of pointer-referenced memory. Section V describes the path 
feasibility algorithm through symbolic execution. Section VI 
provides the results. Section VII presents the conclusion. 
 

II. AUTOMATIC SYMBOLIZATION OF VARIABLES WITH 
UNKNOWN VALUES 

As was mentioned above, in C/C++ programs in various 
scenarios, if memory remains uninitialized, it can contain any 
value. To explore as many execution paths as possible, it is 
reasonable to create symbolic objects for such cases. 

 

A. Automatic Symbolization of Uninitialized Local 
Variables 

Consider the following code example. 
1. int main() { 
2.     int a; 
3.     if (a < 10) 
4.         return 1; 
5.     else if (a > 10) 
6.         return 0; 
7.     else 
8.         return -1; 
9. } 

Based on the C/C++ language standard non-static, 
uninitialized local variable’s value is undefined, meaning it 
can hold any arbitrary value. Here, the variable “a” declared 
at line 2 is uninitialized and can contain any value. Therefore, 
there are three execution paths. But the original KLEE will 
explore only one of these paths because, in such cases, KLEE 
sets a fixed value in the variable “a”. 

Our approach is the following. We create a symbolic 
object for each “alloca” instruction [8]. This object remains 
symbolic till the end of the program or until initialization. As 
the variable “a” is symbolic, the modified KLEE will 
successfully find all three paths. 
 

B. Automatic Symbolization of External Global Variables 
In the following example, the variable “G” is defined and 

may be initialized in another module. 
 
1. extern int G; 

2. int main () { 
3.     if (G == 10) 
4.         return 0; 
5.     else 
6.         return 1; 
7. } 

So there are two execution paths. The solution is the same 
as for local variables. We will make a symbolic object for the 
variable “G”, and modified KLEE will find two paths. 

Another interesting case is processing special global 
variables such as “errno”. Every external function call can 
modify the variable “errno”. Therefore, after every function 
call whose body is not available, the “errno” should be made 
symbolic. In the example below, the source code of the 
function “external_function” is not available, so it can change 
“errno”. 

1. void external_function(); 
2. int main () { 
3.     external_function(); 
4.     if (errno != 0) 
5.         return 1; 
6.     return 0; 
7. } 

After such external calls, the modified KLEE makes 
“errno” symbolic and can explore two execution paths. The 
same approach can be applied to other similar variables. 
 

III. AUTOMATIC SYMBOLIZATION OF FUNCTION 
ARGUMENTS AND RETURN VALUES 

As was mentioned, in some situations, there is a need to 
start the symbolic execution from a specific function. Such a 
function is called “Entry Point”․ 
 

A. Automatic Symbolization of Entry Point Function 
Arguments 
KLEE allows the start of symbolic execution from the 

given function. On the other hand, KLEE supports only the 
processing of “main” function arguments. In other words, this 
feature works if the given entry point function is “main” or 
has no arguments. 

The suggested approach is to make a symbolic object for 
every argument of the entry point function. If the current 
argument is a pointer, make a symbolic pointer (Section IV). 

In the example below, there are three execution paths in 
the function “foo”. 

1. int foo(int a) { 
2.     if (a < 10) 
3.         return 1; 
4.     else if (a > 10) 
5.         return 0; 
6.     else 
7.         return -1; 
8. } 

To explore all three execution paths, modified KLEE 
makes a symbolic object for the argument “a”. 

B. Automatic Symbolization of External Function Return 
Value 
As was mentioned above, there can be a call to a function 

whose body is not available. E.g., a call to a function from a 
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dynamic library. In such cases, KLEE cannot continue the 
symbolic execution or will dynamically execute the called 
external function if possible. To prevent dynamic behavior 
and continue symbolic execution, modified KLEE ignores the 
called function and creates a symbolic object for the returned 
value. In the example below, modified KLEE will find two 
execution paths. 

1. int external_function(); 
2. int main () { 
3.     int a = external_function(); 
4.     if (a) 
5.         return 1; 
6.     return 0; 
7. } 

 

C. Automatic Symbolization of External Function Pointer 
Arguments 
If the pointer is passed to an external function, the pointer-

referenced memory can be modified. So, for each pointer 
argument, modified KLEE will find the pointer-referenced 
memory and automatically make it symbolic. 

1. void external_function(int *ptr); 
2. int main () { 
3.     int a = 10; 
4.     int *ptr_1 = &a; 
5.     int *ptr_2 = &a; 
6.     external_function(ptr_1); 
7.     if (a == 20) 
8.         return 1; 
9.     if(*ptr_2 == 30) 
10.         return 2; 
11.     return 0; 
12. } 

In the example above, modified KLEE will find all three 
execution paths, because after the call of “external_function”, 
the memory under “ptr_1” will be symbolic. This means that 
execution can reach lines 8, 10, and 11. 
 

IV. AUTOMATIC SYMBOLIZATION OF POINTER-REFERENCED 
MEMORY  

Uninitialized pointers, like other uninitialized memories, 
are also made symbolic. However, implementing the 
dereference of a symbolic pointer is a challenging problem. 
When accessing a symbolic address, the original KLEE 
matches the symbolic address with the existing objects of the 
program. It can lead to the creation of numerous execution 
states and slow down the symbolic execution. Another 
approach is to allocate memory with a fixed size under a 
symbolic pointer [9]. This approach suffers from big arrays 
and arrays with symbolic sizes. 

The key idea behind our method as follows. Create a single 
memory object under a symbolic address only when it is 
accessed for the first time. 

For a symbolic pointer, modified KLEE does not create 
any memory until that memory is accessed. If the symbolic 
pointer accesses the memory, a symbolic object is created. 
The relationship between the symbolic pointer and the 
accessed memory is saved. If the same memory is accessed 
after, we use the existing memory that we have created 
previously. 

1. int foo(int* a) { 
2.     if (a[5] < 10) 
3.         return 1; 
4.     else if (a[5] > 10) 
5.         return 0; 
6.     else 
7.         return -1; 
8. } 

For the code example above, modified KLEE at the 
beginning will create only a symbolic pointer for the argument 
“a”. When execution reaches line 2, a symbolic executor 
creates a symbolic memory under “a[5]” and keeps mapping 
between the address “a+5” and the created object. Therefore, 
modified KLEE finds all 3 paths of the function. 
 

V. PATH FEASIBILITY 
Utilizing the implemented features, it is possible to check 

automatically the feasibility of control flow paths. A control 
flow path must contain the following information. 

Entry point: A function name from which symbolic 
execution must start. 

Endpoint: Function name and its basic block specifier, 
which specifies the end of the path. 

Basic blocks: A set of functions with their basic blocks 
contained in the given path. 

For the given path, the path feasibility checker should 
answer whether it is feasible. To answer the question, 
symbolic execution should start from the beginning of the path 
(Entry point) and reach the end (Endpoint), visiting all basic 
blocks of the path. Here is the description of the algorithm. 

1. Start symbolic execution from the beginning of the 
given path. 

a. Make entry function parameters symbolic. 
b. Make external global variables symbolic. 
c. Make uninitialized variables symbolic. 

2. If the executed basic block is from the given path’s 
basic blocks, mark it as executed. 

3. If the branch instruction leads to a basic block 
outside of the given path, eliminate the execution of 
that basic block. Such eliminations will prevent the 
execution of redundant parts and improve scalability. 

4. If the current instruction is the last instruction of the 
Endpoint of the given path and all basic blocks of the 
given path are visited, then stop the execution. It 
means that the given path exists. Otherwise, continue 
the execution. 

5. The given path does not exist if symbolic execution 
is completed, but the endpoint is not reached, or not 
all the given basic blocks are executed. 

 
Algorithm 1: Path Feasibility Algorithm. 

 
Input: Path P as a sequence of basic blocks 
Output: Boolean indicating if path P is feasible 

 
1. MakeSymbolics() 
2. ExecutedBlocks = EmptySet() 
3. while not SymbolicExecutionComplete() do 
4.     Instruction = GetNextInstruction() 
5.     ExecuteInstruction(Instruction) 
6.     CurrentBlock = GetBasicBlock(Instruction) 

180



7.     if CurrentBlock in P then 
8.         ExecutedBlocks.Add(CurrentBlock) 
9.     if IsLastInstructionOfBlock(Instruction) then 
10.         NextBlock = GetNextBasicBlock() 
11.         // Check if the next block is outside the path 
12.         if NextBlock not in P then 
13.             EliminateExecution(NextBlock) 
14.             continue 
15.     // Check if we reached the endpoint 
16.     if IsEndpoint(CurrentBlock) and  
17.        IsLastInstruction(Instruction) and 
18.        AllBlocksExecuted(P, ExecutedBlocks) then 
19.         return true 
20. return false 

 
This is the main algorithm for path feasibility checking. 

Modifications and improvements are possible based on 
control flow path specifications. For example, the modified 
version of this algorithm was integrated into MLH [10], a 
static analyzer for memory leak detection. Reported paths of 
detected memory leaks are verified or rejected. This step 
improved the results of the whole analysis. More detailed 
information is provided in section VI. 
 

VI. RESULTS 
MLH with and without path verification was tested on the 

Juliet test suite [11]. Juliet contains more than 112,000 test 
cases, including about 868 memory leak test cases. The results 
of the evaluation are provided in Table 1. The results show 
that the path verification mechanism filters out all false 
positive results of the static analyzer. 
 

Method True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives 

MLH 868 3940 666 0 

MLH+Path 
Verification 

868 4606 0 0 

Table 1: Static analysis results with and without the path verification 
algorithm 
 

VII. CONCLUSION 
In this work, we have introduced several methods for 

enhancing symbolic execution to support fully automatic 
control-flow path feasibility analysis. By developing 
automatic symbolization techniques for variables with 
unknown values, function arguments, return values, and 
pointer-referenced memories, we have developed a path 
verification algorithm. The integration of this algorithm into a 
static analysis tool demonstrates its practical utility: 
experimental results show significant improvements in 
analysis accuracy. 
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