
Program Path Feasibility Through Symbolic Execution

Hovhannes Movsisyan
Center of Advanced Software

Technologies
Russian-Armenian University

Yerevan, Armenia
e-mail: hovhannes.movsisyan@rau.am

Hripsime Hovhannisyan
Center of Advanced Software

Technologies
Russian-Armenian University

Yerevan, Armenia
e-mail: hripsime.hovhannisyan@rau.am

Hayk Aslanyan
Center of Advanced Software

Technologies
Russian-Armenian University

Yerevan, Armenia
e-mail: hayk.aslanyan@rau.am

Abstract—This article introduces a method for checking
program control flow path feasibility through symbolic
execution. We present an automatic symbolization approaches
that target these important parts: variables with unknown
values, function arguments and return values, and pointer-
referenced memories. The proposed techniques make symbolic
execution more practical for software testing and verification.
We also introduce an algorithm for program control flow path
verification that utilizes the mentioned enhancements. As the
symbolic execution is a resource-demanding process, the path
verification algorithm eliminates redundant program branches.
This feature is integrated into a static analysis tool for more
accurate analysis.

Keywords—Symbolic execution, automatic symbolization,
program path feasibility.

I. INTRODUCTION
In the modern world, where software systems play a

crucial role, ensuring software security and reliability is
essential. As the systems grow in complexity and size, there
is an urgent need for automated software analysis tools. One
of these techniques is symbolic execution. Symbolic
execution [1] is a program analysis technique that interprets a
program's execution using symbolic values instead of
concrete inputs. It explores multiple execution paths
simultaneously by treating input variables as symbolic values.
This approach can help identify potential bugs, vulnerabilities,
and edge cases that traditional testing methods might miss.
Symbolic execution is useful for automated test generation,
program verification, and vulnerability detection in software
systems. However, its practical application is often limited by
scalability issues, path explosion, environment modeling, and
difficulties in handling complex program structures.

This paper focuses on source code symbolic execution for
C and C++ languages. Here are some of the most well-known
symbolic execution tools for the C and C++ languages.

EXE [2] is a symbolic execution tool for the C language
designed for comprehensive testing of complex software.
EXE models memory with bit-level accuracy. This is needed
because code often treats memory as untyped bytes and
observes a memory location in multiple ways. EXE's
performance is based on its ability to resolve constraints
rapidly. This speed is achieved through various optimizations.
EXE utilizes its custom-built constraint solver, STP [3].

Additionally, several higher-level optimizations are
employed, including caching mechanisms and the removal of
irrelevant constraints.

KLEE [4] [5] is a redesign of EXE, designed for C and
C++ languages, built on top of the LLVM compiler [6]
infrastructure. It interprets a program’s LLVM IR. Like EXE,
KLEE models memory with bit-level accuracy and employs a
variety of constraint-solving optimizations. One of the key
improvements of KLEE over EXE is its ability to store a much
larger number of concurrent states. Another important
improvement is its enhanced ability to handle interactions
with the outside environment— for example, with data read
from the file system or over the network—by providing
models designed to explore all possible interactions with the
outside world. KLEE also uses different constraint solvers,
STP and Z3 [7].

Despite KLEE being a state-of-the-art tool for symbolic
execution, it suffers from major limitations:

• Need for manual specification of which inputs
should be treated as symbolic: According to the
C/C++ language standard, if memory is uninitialized,
its value in most cases is undefined. In other words,
such memory can contain any value. For example,
non-static local variables, uninitialized dynamic
memory, etc.. KLEE has no mechanism for
automatic symbolization in such cases.

• The entry function must be main or have no
arguments: Sometimes, there is a need to start the
symbolic execution from a specific function. For
example, when a library function must be executed
symbolically.

• Non-effective handling of symbolic pointers: If
there is a symbolic pointer in a program, KLEE tries
to match the symbolic pointer with the existing
objects of the program. This approach has several
disadvantages. In real-life programs, a symbolic
pointer can match numerous objects, creating new
execution states, increasing the execution time and
memory of symbolic execution. Also, the creation of
new states can lead to a path explosion.

• Dynamic behavior: During the processing of the
called function, KLEE checks whether the called
function exists in the current module. If it does not
exist, there are three available options:
o None - No external function calls are permitted.

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_44 178

o Concrete - Only external calls with concrete
arguments are permitted.

o All - All external function calls are permitted.
To summarize this part, we can say that if there is an

external call, KLEE cannot continue the symbolic execution
or will execute the called external function dynamically,
which leads to the dynamic behavior of the execution. It is a
major limitation for large-scale project analysis.

This work aims to address the mentioned challenges by
developing advanced methods and algorithms that can
significantly increase the effectiveness of symbolic execution
in real-world software analysis scenarios. All proposed
improvements are designed with the ultimate goal of enabling
fully automatic path feasibility analysis.

The rest of this paper is organized as follows. In Sections
II and III, we describe the automatic symbolization of
variables with unknown values, function arguments, and
return values. Section IV shows the automatic symbolization
of pointer-referenced memory. Section V describes the path
feasibility algorithm through symbolic execution. Section VI
provides the results. Section VII presents the conclusion.

II. AUTOMATIC SYMBOLIZATION OF VARIABLES WITH
UNKNOWN VALUES

As was mentioned above, in C/C++ programs in various
scenarios, if memory remains uninitialized, it can contain any
value. To explore as many execution paths as possible, it is
reasonable to create symbolic objects for such cases.

A. Automatic Symbolization of Uninitialized Local
Variables

Consider the following code example.
1. int main() {
2. int a;
3. if (a < 10)
4. return 1;
5. else if (a > 10)
6. return 0;
7. else
8. return -1;
9. }

Based on the C/C++ language standard non-static,
uninitialized local variable’s value is undefined, meaning it
can hold any arbitrary value. Here, the variable “a” declared
at line 2 is uninitialized and can contain any value. Therefore,
there are three execution paths. But the original KLEE will
explore only one of these paths because, in such cases, KLEE
sets a fixed value in the variable “a”.

Our approach is the following. We create a symbolic
object for each “alloca” instruction [8]. This object remains
symbolic till the end of the program or until initialization. As
the variable “a” is symbolic, the modified KLEE will
successfully find all three paths.

B. Automatic Symbolization of External Global Variables
In the following example, the variable “G” is defined and

may be initialized in another module.

1. extern int G;

2. int main () {
3. if (G == 10)
4. return 0;
5. else
6. return 1;
7. }

So there are two execution paths. The solution is the same
as for local variables. We will make a symbolic object for the
variable “G”, and modified KLEE will find two paths.

Another interesting case is processing special global
variables such as “errno”. Every external function call can
modify the variable “errno”. Therefore, after every function
call whose body is not available, the “errno” should be made
symbolic. In the example below, the source code of the
function “external_function” is not available, so it can change
“errno”.

1. void external_function();
2. int main () {
3. external_function();
4. if (errno != 0)
5. return 1;
6. return 0;
7. }

After such external calls, the modified KLEE makes
“errno” symbolic and can explore two execution paths. The
same approach can be applied to other similar variables.

III. AUTOMATIC SYMBOLIZATION OF FUNCTION
ARGUMENTS AND RETURN VALUES

As was mentioned, in some situations, there is a need to
start the symbolic execution from a specific function. Such a
function is called “Entry Point”․

A. Automatic Symbolization of Entry Point Function
Arguments
KLEE allows the start of symbolic execution from the

given function. On the other hand, KLEE supports only the
processing of “main” function arguments. In other words, this
feature works if the given entry point function is “main” or
has no arguments.

The suggested approach is to make a symbolic object for
every argument of the entry point function. If the current
argument is a pointer, make a symbolic pointer (Section IV).

In the example below, there are three execution paths in
the function “foo”.

1. int foo(int a) {
2. if (a < 10)
3. return 1;
4. else if (a > 10)
5. return 0;
6. else
7. return -1;
8. }

To explore all three execution paths, modified KLEE
makes a symbolic object for the argument “a”.

B. Automatic Symbolization of External Function Return
Value
As was mentioned above, there can be a call to a function

whose body is not available. E.g., a call to a function from a

179

dynamic library. In such cases, KLEE cannot continue the
symbolic execution or will dynamically execute the called
external function if possible. To prevent dynamic behavior
and continue symbolic execution, modified KLEE ignores the
called function and creates a symbolic object for the returned
value. In the example below, modified KLEE will find two
execution paths.

1. int external_function();
2. int main () {
3. int a = external_function();
4. if (a)
5. return 1;
6. return 0;
7. }

C. Automatic Symbolization of External Function Pointer
Arguments
If the pointer is passed to an external function, the pointer-

referenced memory can be modified. So, for each pointer
argument, modified KLEE will find the pointer-referenced
memory and automatically make it symbolic.

1. void external_function(int *ptr);
2. int main () {
3. int a = 10;
4. int *ptr_1 = &a;
5. int *ptr_2 = &a;
6. external_function(ptr_1);
7. if (a == 20)
8. return 1;
9. if(*ptr_2 == 30)
10. return 2;
11. return 0;
12. }

In the example above, modified KLEE will find all three
execution paths, because after the call of “external_function”,
the memory under “ptr_1” will be symbolic. This means that
execution can reach lines 8, 10, and 11.

IV. AUTOMATIC SYMBOLIZATION OF POINTER-REFERENCED
MEMORY

Uninitialized pointers, like other uninitialized memories,
are also made symbolic. However, implementing the
dereference of a symbolic pointer is a challenging problem.
When accessing a symbolic address, the original KLEE
matches the symbolic address with the existing objects of the
program. It can lead to the creation of numerous execution
states and slow down the symbolic execution. Another
approach is to allocate memory with a fixed size under a
symbolic pointer [9]. This approach suffers from big arrays
and arrays with symbolic sizes.

The key idea behind our method as follows. Create a single
memory object under a symbolic address only when it is
accessed for the first time.

For a symbolic pointer, modified KLEE does not create
any memory until that memory is accessed. If the symbolic
pointer accesses the memory, a symbolic object is created.
The relationship between the symbolic pointer and the
accessed memory is saved. If the same memory is accessed
after, we use the existing memory that we have created
previously.

1. int foo(int* a) {
2. if (a[5] < 10)
3. return 1;
4. else if (a[5] > 10)
5. return 0;
6. else
7. return -1;
8. }

For the code example above, modified KLEE at the
beginning will create only a symbolic pointer for the argument
“a”. When execution reaches line 2, a symbolic executor
creates a symbolic memory under “a[5]” and keeps mapping
between the address “a+5” and the created object. Therefore,
modified KLEE finds all 3 paths of the function.

V. PATH FEASIBILITY
Utilizing the implemented features, it is possible to check

automatically the feasibility of control flow paths. A control
flow path must contain the following information.

Entry point: A function name from which symbolic
execution must start.

Endpoint: Function name and its basic block specifier,
which specifies the end of the path.

Basic blocks: A set of functions with their basic blocks
contained in the given path.

For the given path, the path feasibility checker should
answer whether it is feasible. To answer the question,
symbolic execution should start from the beginning of the path
(Entry point) and reach the end (Endpoint), visiting all basic
blocks of the path. Here is the description of the algorithm.

1. Start symbolic execution from the beginning of the
given path.

a. Make entry function parameters symbolic.
b. Make external global variables symbolic.
c. Make uninitialized variables symbolic.

2. If the executed basic block is from the given path’s
basic blocks, mark it as executed.

3. If the branch instruction leads to a basic block
outside of the given path, eliminate the execution of
that basic block. Such eliminations will prevent the
execution of redundant parts and improve scalability.

4. If the current instruction is the last instruction of the
Endpoint of the given path and all basic blocks of the
given path are visited, then stop the execution. It
means that the given path exists. Otherwise, continue
the execution.

5. The given path does not exist if symbolic execution
is completed, but the endpoint is not reached, or not
all the given basic blocks are executed.

Algorithm 1: Path Feasibility Algorithm.

Input: Path P as a sequence of basic blocks
Output: Boolean indicating if path P is feasible

1. MakeSymbolics()
2. ExecutedBlocks = EmptySet()
3. while not SymbolicExecutionComplete() do
4. Instruction = GetNextInstruction()
5. ExecuteInstruction(Instruction)
6. CurrentBlock = GetBasicBlock(Instruction)

180

7. if CurrentBlock in P then
8. ExecutedBlocks.Add(CurrentBlock)
9. if IsLastInstructionOfBlock(Instruction) then
10. NextBlock = GetNextBasicBlock()
11. // Check if the next block is outside the path
12. if NextBlock not in P then
13. EliminateExecution(NextBlock)
14. continue
15. // Check if we reached the endpoint
16. if IsEndpoint(CurrentBlock) and
17. IsLastInstruction(Instruction) and
18. AllBlocksExecuted(P, ExecutedBlocks) then
19. return true
20. return false

This is the main algorithm for path feasibility checking.

Modifications and improvements are possible based on
control flow path specifications. For example, the modified
version of this algorithm was integrated into MLH [10], a
static analyzer for memory leak detection. Reported paths of
detected memory leaks are verified or rejected. This step
improved the results of the whole analysis. More detailed
information is provided in section VI.

VI. RESULTS
MLH with and without path verification was tested on the

Juliet test suite [11]. Juliet contains more than 112,000 test
cases, including about 868 memory leak test cases. The results
of the evaluation are provided in Table 1. The results show
that the path verification mechanism filters out all false
positive results of the static analyzer.

Method True
Positives

True
Negatives

False
Positives

False
Negatives

MLH 868 3940 666 0

MLH+Path
Verification

868 4606 0 0

Table 1: Static analysis results with and without the path verification
algorithm

VII. CONCLUSION
In this work, we have introduced several methods for

enhancing symbolic execution to support fully automatic
control-flow path feasibility analysis. By developing
automatic symbolization techniques for variables with
unknown values, function arguments, return values, and
pointer-referenced memories, we have developed a path
verification algorithm. The integration of this algorithm into a
static analysis tool demonstrates its practical utility:
experimental results show significant improvements in
analysis accuracy.

ACKNOWLEDGMENT
The work was supported by the Science Committee of the

Republic of Armenia, in the frames of the research project
24AA-1B021.

REFERENCES

[1] J. C. King, "Symbolic execution and program testing," Association for

Computing Machinery, vol. 19, no. July 1976, p. 385–394, 1976.
[2] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler,

"EXE: Automatically Generating Inputs of Death," ACM Trans. Inf.
Syst. Secur., vol. 12, no. 12, pp. 1-38, 2008.

[3] V. Ganesh and D. L. Dill , "A decision procedure for bit-vectors and
arrays," Lecture Notes in Computer Science, vol. 4590, pp. 519-531,
2007.

[4] C. Cadar, D. Dunbar and D. Engler, "KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs," in
USENIX Association, San Diego, 2008.

[5] "KLEE Symbolic Execution Engine," [Online]. Available: https://klee-
se.org/. [Accessed 28 June 2025].

[6] "The LLVM Compiler Infrastructure," [Online]. Available:
https://llvm.org/. [Accessed 28 June 2025].

[7] L. De Moura and N. Bjørner, "Satisfiability modulo theories:
introduction and applications," Commun. ACM, vol. 54, no. 9, pp. 69-
77, 2011.

[8] "LLVM Language Reference Manual," [Online]. Available:
https://llvm.org/docs/LangRef.html. [Accessed 28 June 2025].

[9] A. Misonizhnik, S. Morozov, Y. Kostyukov, V. Kalugin, A. Babushkin,
D. Mordvinov and D. Ivanov, "KLEEF: Symbolic Execution Engine
(Competition Contribution)," in In Fundamental Approaches to
Software Engineering: 27th International Conference, Luxembourg,
2024.

[10] H. Aslanyan, H. Movsisyan, H. Hovhannisyan, Z. Gevorgyan, R.
Mkoyan, A. Avetisyan and S. Sargsyan, "Combining Static Analysis
With Directed Symbolic Execution for Scalable and Accurate Memory
Leak Detection," IEEE Access, vol. 12, pp. 80128-80137, 2024.

[11] "Juliet test suite," [Online]. Available:
https://samate.nist.gov/SARD/test-suites. [Accessed 28 June 2025].

181

	I. Introduction
	II. Automatic Symbolization Of Variables With Unknown Values
	A. Automatic Symbolization of Uninitialized Local Variables
	B. Automatic Symbolization of External Global Variables

	III. Automatic Symbolization of Function Arguments And Return Values
	A. Automatic Symbolization of Entry Point Function Arguments
	B. Automatic Symbolization of External Function Return Value
	C. Automatic Symbolization of External Function Pointer Arguments

	IV. Automatic Symbolization of Pointer-Referenced Memory
	V. Path Feasibility
	VI. Results
	VII. Conclusion
	References

