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Abstract—The problem of logarithmically asymptotically opti-
mal hypothesis testing for a continuous random variable (CRV)
is considered. It is assumed that M continuous probability
distributions (CPDs) are known, and the object described by
the CRV follows one of them.

This problem, in the case of discrete probability distributions,
was introduced and extensively studied in [1].

In this paper, a quantization method is applied to continuous 
distributions. Some known results are generalized and reformu-
lated for the continuous case.

  Keywords—Continuous probability distribution, Probability 
den-sity function, Hypothesis testing, Reliabilities.

I. INTRODUCTION

The classical problem of statistical hypothesis testing in-
volves two hypotheses [2]. A statistical decision procedure
used to test hypotheses is called a test. The probability of
incorrectly accepting one hypothesis instead of the other is
known as the error probability.

We consider the case of a sequence of tests in which the
error probabilities decay exponentially as 2−NE , where N is
the number of observations (i.e., the sample size) and E is the
exponent of the error probability, called reliability.

The aim of this line of research is to determine the optimal
functional relationship between the error exponents of the
first and second kinds of errors. Such optimal tests were first
studied by Hoeffding [3], and later by Csiszár and Longo [4],
Tusnády [5], [6], Longo and Sgarro [7], Birgé [8] (who
introduced the term logarithmically asymptotically optimal, or
LAO), among others. Several authors [6], [9], [10] have also
used the term exponentially rate optimal (ERO) to refer to this
notion of testing.

Let X be a CRV taking values in a continuous set X .
Assume that the CPDs P1, P2, . . . , PM are given and let the
corresponding probability density functions (PDFs) be denoted

by gm, m = 1, . . . ,M . Let x = (x1, x2, . . . , xN ) be a random
sample. Based on this sample, the statistician must make a
decision among the following hypotheses:

H1 : X ∼ P1, H2 : X ∼ P2, . . . , HM : X ∼ PM .

We approach the solution of this problem by referring
to Haroutunian’s result [1], proved in the case of discrete
probability distributions using the Csiszár–Körner method of
types. To apply the same technique in the continuous setting,
we begin by quantizing the given CPDs.

Consider the partition −∞ < a1 < a2 < · · · < aR < +∞
of the set X . Let us define the quantization points XR =

{cr}Rr=0, where each cr is a representative point in the interval
(ar, ar+1) (for example, the midpoint).

We define the quantized probability distributions (PDs) GR
m,

m = 1,M , on the finite set XR, corresponding to the PDFs
gm, by

GR
m(cr) =

∫ ar+1

ar

gm(u) du, for r = 1, R− 1, where

ar < cr < ar+1,

GR
m(c0) = lim

a→−∞

∫ a1

a

gm(u) du,

GR
m(cR) = lim

b→+∞

∫ b

aR

gm(u) du.

We assume that the PDFs gm coincide with each other
only at a finite number of points. Then, by choosing the
partition size R sufficiently large, we can, without loss of
generality, assume that all discrete probability distributions
GR

m are distinct.
For a sample x = (x1, x2, . . . , xN ), we construct the

corresponding quantized sample xR = (xR
1 , x

R
2 , . . . , x

R
N ),

where each quantized observation is defined by xR
n = cr if

ar ≤ xn < ar+1.
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For each fixed R, we consider a decision-making procedure
in the form of a non-randomized test φ(N,R), which is defined
by a partition of the sample space XN

R into M disjoint subsets.

A(N,R)
l = {xR ∈ XN

R : φ(N,R)(xR) = l, l = 1,M}.

The set A(N,R)
l contains all vectors xR ∈ XN

R for which
the hypothesis HR

l : GR = GR
l is adopted. Therefore,

G(N,R)
m (xR)

△
=

N∏
n=1

GR
m(xR

n ),

So, the probability α
(N,R)
l|m = α

(N,R)
l|m (φN,R) of the erro-

neous acceptance of the hypothesis HR
l provided that HR

m is
true is

α
(N,R)
l|m = G(N,R)

m (A(N,R)
l )

=
∑

xR∈A(N,R)
l

G(N,R)
m (xR), l ̸= m.

We will use the following definition for the probability of
rejection of the hypothesis HR

m, when it is true, as

α
(N,R)
m|m

△
=

∑
l ̸=m

α
(N,R)
l|m ,

and will consider the error probability exponents, which are
also called reliabilities.

− lim
N→∞

1

N
logα

(N,R)
l|m

△
= ER

l|m ≥ 0, m, l = 1,M.

It is known that

ER
m|m = min

l ̸=m
ER

l|m.

The matrix ER = {ER
l|m(φR)} is called the reliability matrix

of the sequence of tests φR.
If we consider a discrete random variable defined on finite

sets, we will use the same notation as above, omitting the
index R for all corresponding quantities.

II. GENERALIZATION OF SOME RESULTS

We generalize the concept of reliability for the contin-
uous case in the following way:

El|m
△
= lim

R→∞
ER

l|m,m, l = 1,M.

We will use the (Kullback - Leibler) divergence D(G∥Q)

for discrete probability distributions (PDs) G and Q, as usual
[12], [13]:

D(G∥Q) =
∑
x

G(x) log
G(x)

Q(x)
,

and for PDFs f and g, the notation K(f ∥ g) =
∫
X
flog f

g .

We now formulate and prove the main theorem of this
article, the application of which will solve the proposed
problem.

Theorem: Let FR and GR be the R-quantizations of
the PDFs f and g, respectively, and suppose that the Kull-
back–Leibler divergence K(f ∥ g) < ∞. Then

D(FR ∥ GR) → K(f ∥ g), as R → ∞.

Proof: By the mean value theorem, there exist values cfr
and cgr such that

FR(cr) = f(cfr )∆R and GR(cr) = g(cgr)∆R.

The divergence of the quantized versions is

D(FR ∥ GR) =

R∑
r=0

FR(cr) log
FR(cr)

GR(cr)

=

R∑
r=0

f(cfr )∆R log
f(cfr )∆R

g(cgr)∆R
=

R∑
r=0

f(cfr )∆R log
f(cfr )

g(cgr)
.

Then, from the inequality

min
c∈{cfr ,cgr}

R∑
r=0

f(c)∆R log
f(c)

g(c)
≤ D(FR ∥ GR)

≤ max
c∈{cfr ,cgr}

R∑
r=0

f(c)∆R log
f(c)

g(c)
,

and since K(f ∥ g) < ∞, the function under the sum is
Riemann integrable, so

R∑
r=0

f(c)∆R log
f(c)

g(c)

is a Riemann sum that approximates K(f ∥ g). Hence, it
follows that

D(FR ∥ GR) → K(f ∥ g), as R → ∞.

So, the theorem is proved.

III. LAO TESTING OF MANY HYPOTHESES FOR

CONTINUOUS OBJECT

In this section, we consider the LAO hypothesis testing
problem in the context of R-quantization.

A sequence of tests φR∗ is said to be logarithmically
asymptotically optimal (LAO) if, for the given positive values
of the first M − 1 diagonal elements of the matrix E(φR∗),
the remaining elements achieve their maximal possible values.

Let N(x|x) be the number of repetitions of the element
x ∈ XR in the vector x ∈ XN

R , and let

QxR = {N(x|x)/N, x ∈ XR}
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be the empirical distribution (type) of the sample x.

For the given positive diagonal elements
ER

1|1, E
R
2|2, . . . , E

R
M−1|M−1 of the reliability matrix, we

consider sets of PDs

RR
l

△
= {QR : D(QR||GR

l ) ≤ ER
l|l}, l = 1,M − 1, (1)

RR
M

△
= {QR : D(QR||GR

l ) > ER
l|l, l = 1,M − 1} (2)

and define the values for the elements of the future reliability
matrix of the LAO tests sequence as follows:

ER∗
l|l = ER∗

l|l (E
R
l|l)

△
= ER

l|l, l = M − 1, (3)

ER∗
l|m = ER∗

l|m(ER
l|l)

△
= inf

QR∈RR
l

D(QR||GR
m), m = 1,M,

m ̸= l, l = 1,M − 1, (4)

ER∗
M |m = ER∗

M |m(ER
1|1, . . . , E

R
M−1|M−1)

△
= inf

QR∈RR
M

D(QR||GR
m), m = 1,M − 1, (5)

ER∗
M |M = ER∗

M |M (ER
1|1, . . . , E

R
M−1|M−1)

△
= min

l=1,M−1
ER∗

M |l.

(6)
Thus, we can reformulate Haroutunian’s theorem, the re-

sult of which provides the optimal relationships between the
reliabilities.

Theorem [1]: If the distributions GR
m are distinct, that is, all

Kullback–Leibler divergences D(GR
l ∥GR

m) for l ̸= m, l,m =

1,M , are strictly positive, then the following two statements
hold:

a) If the given numbers ER
1|1, E

R
2|2, . . . , E

R
M−1|M−1 satisfy

the conditions

0 < ER
1|1 < min

l=2,M
D(GR

l ||GR
1 ), (7)

0 < ER
m|m < min[ min

l=1,m−1
ER∗

l|m(ER
l|l), min

l=m+1,M
D(GR

l ||GR
m)],

m = 2,M − 1, (8)

for all R, then there exists an LAO sequence of tests φR∗ such
that the elements of its reliability matrix E(φR∗) = {ER∗

l|m},
defined in (3)–(6), are all strictly positive.

b) Conversely, if even one of the conditions (7) or (8) is
violated, then the reliability matrix of any such test contains
at least one zero element.

IV. CONCLUSION

  In this paper, a suitable hypothesis testing strategy is 
discussed for the model of one object with M known 
CPDs. The optimal relationships among the reliabilities are 
established.
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