
Integrated Service Registry and Discovery for
Secure Secret Management in Dynamic

Microservice Environments

Meri Danielyan
National Polytechnic University of Armenia

Yerevan, Armenia
e-mail: meridanielyan.tt055-1@polytechnic.am

Artak Khemchyan
National Polytechnic University of Armenia

Yerevan, Armenia
e-mail: a.khemchyan@polytechnic.am

Abstract— Software design has been changed by microservices,
which allow for freedom and growth across sectors. However, in
dynamic situations, this design makes it difficult to safely handle
secrets and ensure smooth inter-service contact. HashiCorp
Vault, AWS Secrets Manager, and other standard secret
management systems frequently depend on external service
directories for service finding. That increases practical
complexity and adds possible points of failure. In this work, we
study these problems and provide a unique solution.Our solution
is to merge a small service registry and discovery right into the
secret management system. This combined method maintains
operational resilience and scalability in microservice designs. It
is going to make operations easier, cut down on dependency
chains, and improve security through secure service discovery.
Our prototype offers a workable answer for safe secret
management in dynamic cloud-native systems by showing
decreased delay, increased availability, and better control
without losing security.

Keywords—Secret management, service discovery, service
registry, microservices, security, cloud-native architecture,
distributed systems, system resilience.

I. INTRODUCTION
The design of microservices has appeared as a key

component for building scalable, resilient, and flexible
systems, so organizations decompose monoliths into smaller
independent services to speed delivery and enable team
autonomy [1,2]. However, this shift creates practical and
security challenges: microservices often need access to
sensitive data (API keys, passwords, encryption keys,
identities), and poor secret handling can cause unauthorized
access, data breaches, or service outages [3,4].

Secret management systems (Google Secret Manager,
AWS Secrets Manager, HashiCorp Vault) mitigate these risks
via TTLs, dynamic secret creation, strong encryption, and
centralized auditing [5,6]. Yet static endpoints fail in
microservice environments, services scale, containers restart,
and platforms like Kubernetes often change IPs, so reliable
service discovery is essential [7,8]. Teams commonly pair
secret managers with external registries (e.g., Consul) to

locate services, monitor health, and enable dynamic routing,
but this external dependency introduces several challenges
[5,9].

Although useful, this dependence on outside service
registries presents a number of difficulties:

• Operational complexity: Teams must set up extra
infrastructure elements, which raises the operational
cost and system complexity [4].

• Possible single points of failure: The provision of
secret management services might be jeopardized if
the external register is made unusable by network
failures, misconfigurations, or partitions [10].

• Expanded attack surface: By adding more services,
the number of possible attack routes increases [4].

• Resource overhead for small teams: Because of
their limited operational resources, startups, small
teams, and edge settings may find it hard to keep a
separate service registry [3].

To meet the practical and security requirements of the
current cloud-native and microservice-based systems, we
show in this paper that safe, dynamic service discovery may
be accomplished inside secret management systems without
the need for external dependencies.

II. RELATED WORK
Secure microservice architectures are built on the

foundation of effective secret management and reliable
service discovery. HashiCorp Vault (and managed
alternatives such as Google Secret Manager and AWS Secrets
Manager) provides centralized secret storage, dynamic short-
lived credentials, fine-grained access control, and audit
logging, relieving teams of much operational burden while
integrating tightly with cloud IAM and rotation workflows
[5,6].

However, these systems require dependable service
endpoint awareness—static endpoints break down in dynamic
environments where services scale, containers restart, and IPs
change—so service discovery is essential [3,7,8]. Common

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_32 133

discovery solutions include Consul (DNS/HTTP discovery,
health checks) and etcd (CNCF) as well as Kubernetes’ built-
in DNS/labels, which together enable dynamic routing and
reduce manual reconfiguration [8,9].

Integrating secret management with external discovery
(e.g., Vault + Consul) works in many settings, but introduces
operational dependencies: teams must provision, secure, and
monitor extra infrastructure, increasing complexity, cost, and
potential single points of failure if the registry becomes
unavailable [10]. This gap is especially pressing for
environments characterized by:

• Ephemeral and dynamic architectures with
frequent instance changes.

• Constrained or edge deployments lack resources to
operate separate registries.

• Security-critical systems, where minimizing the
attack surface and external dependencies is
paramount [3,4].

Motivated by these limitations, our work explores
embedding a dynamic, security-centric service discovery
mechanism directly into the secret management system to
streamline operations, preserve security guarantees, and
support dynamic or constrained deployments without third-
party registries [3,5].

III. THE SUGGESTED SOLUTION
In this study, we provide a Secret Management System

that has built-in Service Discovery. It is made for dynamic
microservice systems, where services often change and grow.
This method expands on the problems that were spoken about
before [1,3].
A. Design Principles

The following ideas form the basis of the system's design:
• Integration over dependency: Embed simple

discovery functionality within the secret
management system, eliminating external service
registries [10].

• Dynamic adaptability: Allow services to register
and deregister dynamically to support scaling and IP
changes [8].

• Security-centric architecture: Ensure service
discovery doesn't compromise security and eliminate
external registry failure points [5,10].

• Resource efficiency: Minimize resource usage
while maintaining functionality for small-scale
deployments and edge cases [3].

B. System Architecture
The following elements make up the suggested system:

Secret Management Core:
• Dynamic secret creation and rotation with TTL-

based expiry.
• Secure secret storage with encryption-at-rest and

encryption-in-transit.
• Policy-based access control and comprehensive

auditing.
Embedded Service Registry:

• Enables services to self-register with metadata
(service name, instance ID, IP, port, health endpoint)
[9].

• Keeps track of active service instances and their
health status on an internal registry map [9].

• Supports health checks (HTTP, gRPC, TCP) to
ensure registered services remain healthy.

• Provides HTTP and gRPC APIs for clients to
dynamically discover available services.

Secure Discovery Protocol:
• All service discovery communications use

TLS/mTLS to prevent attacks and ensure
authenticity [4]

• Services authenticate using temporary tokens or
certificates generated by the secret management
system [5].

• Real-time monitoring and notification mechanisms
update clients when service endpoints change [8].

Figure 1. Overall research flow

C. Operational Workflow and Improvements in Security
Operational workflow is shown in Figure 1.

Service Registration:
• Upon starting, a microservice asks the secret

manager for a temporary registration token [5].
• This token is used by the microservice to safely

register its health check endpoint and information
with the embedded registry [9].

• The registry keeps track of the service's data and
monitors its status through periodic health checks.

Secret Retrieval:
• Services authenticate using identity tokens or mTLS

certificates [4,5].
• Dynamic secrets can be generated on demand (like

database credentials) with automatic revocation upon
expiration or deregistration.

• Secrets are provided with TTL-based lifecycles,
ensuring periodic rotation to minimize exposure.

Service Discovery:
• Other services can actively query the secret manager

for available service instances [9].
• The integrated registry returns healthy, operational

service endpoints with updated addresses if IPs have
changed due to scaling [8].

• Clients can subscribe to endpoint changes to adapt
connections without manual restarts.

Improvements in Security:

134

For keeping and improving security in this integrated
model:

• Authorization management: Authorization
policies specify which services are allowed to find or
register other services, and discovery and registration
APIs need authentication [4,5].

• Boundary protection: The internal registry cannot
be directly accessed by external clients, reducing the
attack surface

• Activity logging: For compliance and traceability,
every registration, discovery, and secret access
operation is recorded.

Advantages compared to the current architecture
Our testing showed clear benefits compared to setups that

use Vault with external registries like Consul:
• Operational simplicity: Deployment and

maintenance are made easier by fewer moving
components [4].

• Latency optimization: Gets rid of extra network
connections and dependencies for finding services
[9].

• Enhanced availability: This lowers the need for
external registry availability for dynamic routing and
secret access [10].

• Surface area reduction: Fewer external interfaces
to protect, which lowers the possibility of
vulnerabilities [4].

• Dynamic environment adaptation: Made for
containerized environments and Kubernetes where
services expand horizontally or change IPs regularly
[7].

IV. TESTING AND RESULTS
An organized experimental study is meant to prove the

effectiveness of the offered Secret Management System with
Integrated Service Discovery. The performance, reliability,
security, and ease of use of the system in microservice
contexts will be the main goals of this assessment [1,3].

The results of this assessment, presented in Table 1 and
Figures 2 and 3 highlight improvements in security,
performance, and operational efficiency compared to
conventional designs.

A. System Configuration and Testing Approach
Hardware environment

• CPU: AMD Ryzen 7 5700U, 8 cores, 16 threads @
3.8 GHz.

• RAM: 16GB DDR4.
• Storage: 512GB NVMe SSD.
• Network: Stable local gigabit Ethernet.

Software environment:
• Operating System: Ubuntu 24.04 LTS.
• Go version: 1.22
• Database: PostgreSQL 16 for secret storage.
• Load Testing Tool: k6 for simulating multiple

secret retrieval and discovery requests.
• Monitoring Tools: Grafana + Prometheus for live

tracking.
• Comparison baseline: HashiCorp Vault 1.15 +

Consul 1.18, configured with default HA setup.
Testing scenarios:

We tested the proposed system in the following scenarios:
• Initialized our implementation with 10 microservices

performing periodic finding and secret recovery
under rising load.

• Simulated dynamic IP changes, network pauses, and
service restarts to measure recovery and consistency.

• Monitored metrics, delay, throughput, and system
security for 48-hour ongoing testing rounds.

• Used mTLS certificates during all tests to ensure
true, secure communication routes.

• Compared raw data with Vault+Consul under similar
workload trends.

B. Outcomes of Performance
Key Findings:

• Service registration and discovery latency reduced
by approximately 60%.

• Secret retrieval improved by around 40% due to
reduced inter-service communication overhead.

• System handled 350-400 requests per second per
node before reaching resource limits.

• CPU and memory usage reduced by 50-60%
compared to Vault+Consul.

• The configuration was reduced by approximately
50%.

• System kept 99.99% availability with 2-4 seconds of
recovery from network failures.

Security Results:
• All communications successfully used mTLS for

authentication and confidentiality.
• Unauthorized registration and retrieval attempts

were effectively blocked.
• TTL-based secret rotation performed seamlessly

without affecting system availability.
• Comprehensive audit logs captured all access

attempts for monitoring.

Figure 2. Latency comparison bar chart

Figure 3. CPU Usage comparison bar chart

135

Table 1. Result of comparison

C. Discussion
The basic idea of integrating service discovery into the

secret management system lowers complexity while
improving performance and dependability in microservice
settings, as validated by the experimental assessment. The
method is especially useful in situations that call for:

• Regular IP changes and service scalability.
• Small teams or production edge settings that need

slight, self-contained secret management.
• A lighter operating load without losing security. But

it is important to discover any possible drawbacks.
• Additional testing and tuning will be required for

very large-scale settings (>1000 services) to verify
consistent performance.

• If necessary, in the future, further implementation
may be required for advanced service discovery
capabilities (such as geo-aware routing and
sophisticated health checks) that are accessible in
dedicated registries.

All things considered, the integrated system shows
promise as a workable, effective substitute for dynamic
service discovery and safe secret management in distributed
systems.

V. CONCLUSION

A. Final Thoughts
This research addressed a practical challenge in

microservice architecture: the operational and security
complexities created by relying on external service registries
for secret management systems. While tools like HashiCorp
Vault provide strong security practices, their dependence on
external service discovery systems adds operational fragility,
potential failure points, and unnecessary infrastructure costs.

Our integrated Secret Management System with Service
Discovery successfully eliminated the need for third-party
registries while maintaining secure, dynamic service
discovery. The system demonstrated:

• 60% reduction in service registration and discovery
latency.

• 50-60% reduction in CPU and memory usage.
• 99.99% uptime with seamless recovery from

network disruptions.

• Significant operational simplification without
compromising security.

This approach empowers smaller teams to adopt best
practice secret management without the burden of maintaining
additional infrastructure, enables edge deployments with
improved fault tolerance, and supports the principle that
security and simplicity can coexist.
Future Directions:

• Scaling validation for large microservice
environments (1000+ services).

• Smart routing capabilities, including health-based
routing and geo-awareness.

• Seamless Kubernetes integration for hybrid
environments.

• Open source development for community validation
and contribution.

The integrated system provides a strong foundation for
teams seeking to build secure, scalable, and manageable
microservice infrastructures, affirming that simplicity is not
the enemy of security, but rather a powerful enabler when
carefully designed.

REFERENCES
[1] M. Fowler, "Microservices: A Definition of This New Architectural

Term," Martin Fowler's Blog, March 25, 2014.
[2] S. Newman, Building Microservices: Designing Fine-Grained Systems,

1st ed. O'Reilly Media, Sebastopol, CA, pp. 280–315, 2015.
[3] J. Soldani, D. A. Tamburri, and W. J. Van Den Heuvel, "The Pains and

Gains of Microservices: A Systematic Grey Literature Review," Journal
of Systems and Software, vol. 146, pp. 215–232, 2018.

[4] A. Balalaie, A. Heydarnoori, and P. Jamshidi, "Microservices
Architecture Enables DevOps: Migration to a Cloud-Native
Architecture," IEEE Software, vol. 33, no. 3, pp. 42–52, 2016.

[5] A. Dadgar, H. Mitchell, and D. Hashimoto, "Vault: Securing, Storing,
and Tightly Controlling Access to Tokens, Passwords, Certificates, and
Encryption Keys," HashiCorp Technical Documentation, v1.0, 2015.

[6] Amazon Web Services, "AWS Secrets Manager User Guide," AWS
Documentation, v1.0, 2023.

[7] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, "Borg,
Omega, and Kubernetes: Lessons Learned from Three Container-
Management Systems over a Decade," ACM Queue, vol. 14, no. 1, pp.
70–93, 2016.

[8] Kubernetes Authors, "Kubernetes Documentation: Service Discovery
and DNS," Kubernetes.io, 2023.

[9] HashiCorp Inc., "Consul Service Discovery and Configuration,"
HashiCorp Technical Documentation, v1.18, 2023.

[10] E. Brewer, "CAP Twelve Years Later: How the 'Rules' Have Changed,"
IEEE Computer, vol. 45, no. 2, pp. 23–29, 2012.

Metric Proposed
System

Vault +
Consul

Improvement
(%)

Registration
Latency(ms)

12-18 35-50 ~60%

Discovery
Latency(ms)

12.4-15.7 25-40 ~60%

Secret
Retireval
Latency(ms)

8-14 15.1-22 ~40%

CPU Usage <20% 35-40% ~50%
reduction

Memory
Usage

<150 MB 300-
400MB

~60%
reduction

Availability 99.99% 99.95% Slight increase

136

	I. Introduction
	II. Related Work
	III. The Suggested Solution
	A. Design Principles
	B. System Architecture
	C. Operational Workflow and Improvements in Security

	IV. Testing and Results
	A. System Configuration and Testing Approach
	B. Outcomes of Performance
	C. Discussion

	V. Conclusion
	A. Final Thoughts
	References

