CSIT Conference 2025, Y erevan, Armenia, September 22 - 26

Detecting Data Races in Real-Time Operating
Systems with RaceHunter Tool

Evgeny Gerlits
ISP RAS
Moscow, Russia
e-mail: gerlits@ispras.ru

Abstract—In this paper, we share our experience in applying
a dynamic data race detection tool called RaceHunter to
an industrial real-time operating system. We evaluate the
performance and memory usage of the tool and present some
key learnings.

Keywords—RaceHunter, data race, race condition, dynamic
program analysis, real-time operating system, RTOS, ARINC-
653.

I. INTRODUCTION

Real-time operating systems (RTOS) usually run application
software that controls different equipment. RTOSs are widely
used in different fields, e.g., avionics, automotive, medical
devices, etc. In this paper, we take a particular RTOS [1] from
the civil avionics field. As operating systems and application
software in this field must not contain any critical errors
leading to crashes, their design and development are regulated
by an international standard DO-178C [2].

In order to prevent errors in one application from causing
errors in another, the RTOS must follow the time and space
partitioning specifications defined in the ARINC-653 standard
[3]. This standard provides an API (Application Programming
Interface) called ARINC-653 APEX for the application pro-
cesses to communicate with the OS kernel. APEX provides
several thread management services (functions), including
those for creating, stopping, and synchronizing threads. By
calling APEX services, application threads form concurrent
execution contexts inside the OS kernel. These thread execu-
tion contexts combined with the kernel service threads and
asynchronous interrupts, make an ARINC-653 RTOS kernel a
highly multithreaded piece of software.

According to [4], one of the most common issues with
multithreaded programs is data races, which occur when there
is incorrect synchronization between threads. Data races can
result in wrong values in memory, leading to wrong program
results and memory access violation exceptions. According
to the C [5] language standard, a data race is classified as
an undefined behavior, making the whole program execution
unpredictable and error-prone. Thus, checking multithreaded
software, and especially safety-critical software, for data races
is necessary. In this paper, we will use a dynamic data race
detection tool called RaceHunter [6].

The paper is structured as follows. In Section II, we outline
RaceHunter approach. As RaceHunter is a dynamic data race

https://doi.org/10.51408/csit2025_34

detection tool, it requires tests to run on. In Section III, we
generate tests as simple multithreaded applications calling
APEX services in parallel. In Section IV, we present some
testing statistics that shows real performance of RaceHunter
tool and its memory usage. We learn some lessons from this
case study research in Section V. At the end of our paper,
we summarize our findings and suggest directions for future
research.

II. RACEHUNTER APPROACH

0S kernel
source code modules

Os kernel
object code modules

RaceHunter
static runime library

D Compilation l:' SSea
I:‘ - instru m:ntation - l:' - -
[L]

Run a test
(multithreaded application

Rerun the test calling OS kernel API) l

I |
Next (] [
[
Post-mortem Event
D - ‘_ ‘
[
L] |
[

|
I target
| —
|
|
I Target set

(pairs of potentially racing memory access events) |

Monitoring
of OS kernel
execution

Watchpoint
analysis

Run-time

Run-time

Fig. 1. General scheme of running one test with RaceHunter

A. Instrumentation

Instrumentation makes it possible to monitor and handle var-
ious events in the OS kernel executions. More than 99.9% of
the OS kernel code is instrumented automatically. RaceHunter
instrumentation is implemented as a Clang compiler pass over
LLVM IR (Low Level Virtual Machine Intermediate Repre-
sentation) source code representation. The compiler inserts
function calls to the RaceHunter run-time library functions
before every memory access instruction, as well as at the
beginning of every OS kernel function, before every function
return instruction (and implicit function return point). Some
code places are instrumented manually, e.g., thread creation
function, initial interrupt function, mutex lock and unlock
functions.

141

B. Monitoring

At this stage, a test is run and events that occur in the OS
kernel are monitored and recorded in a trace. A typical test
is a multithreaded application program calling some APEX
services from different threads. We do not manage thread
scheduling and do not control asynchronous interrupts, i.e., the
OS kernel code is executed as usual, but with some slowdown
due to instrumentation. Most of the events are executions of
OS kernel operations: memory access instruction executions,
function calls, and returns. In addition, we monitor and record
thread spawning and joining events, interrupt start and finish
events, mutex lock and unlock events. The monitoring result
is the event frace where events within every single execution
context (thread or interrupt) are ordered sequentially. Order
between events from different execution contexts is not tracked
explicitly.

C. Trace analysis

The trace is scanned for pairs of conflicting memory access
events (memory access instruction executions). Two memory
access events conflict if the conjunction of the following
conditions holds:

o Two events access a common memory segment.

o At least one event is a write.

o At least one event is not performed atomically.

o The events happen in different execution contexts.

e The events are not synchronized by mutex lock/unlock

events, which is checked by the lock-set analysis.

o The events are not synchronized by the thread create/join
events, which is checked by the thread concurrency
analysis.

The result of this stage is a set of targets, where the target
is a pair of descriptors of conflicting memory access events.
A memory access descriptor contains various information
about one memory access event, including the memory access
instruction location, whether the event has happened in an
interrupt or a thread and the function call stack at the time of
the event.

D. Watchpoint analysis

For each target, the test is re-run once to provoke the
potential data race described by the rarget. We provoke data
races in the following way. If a memory access event occurs
that matches a memory access descriptor from the target,
RaceHunter will pause the current execution context (thread
or interrupt) for a given amount of time in order to wait for
another memory access that matches the other memory access
descriptor from the same target. If it occurs, then the potential
data race described by the target is confirmed.

E. Comparison with existing dynamic data race detectors

RaceHunter approach strengthens industrial KCSAN [7]
approach by systematically checking every conflicting memory
access event instead of random memory access sampling
performed by KCSAN. Drawbacks of RaceHunter are worse
scalability and performance.

RaceHunter applies a variant of lock-set analysis to filter
out non-conflicting memory access events. It differs from
the existing lock-set analyses [8], [9] in that it is a post-
mortem trace analysis. For the same goals, RaceHunter applies
a variant of post-mortem happens-before analysis based on
thread spawning and joining events called thread concurrency
analysis. Tt differs from the existing happens-before analyses
[10], [11] in that it does not utilize vector clocks [12].

RaceHunter approach is most similar to the active testing
approach [13], since it looks for potential data races on the
first stage and confirms them on the second stage. RaceHunter
differs from the active testing in several ways:

o RaceHunter minimizes execution slowdown at the first
stage (monitoring) by simply logging events for a subse-
quent post-mortem trace analysis, while the active testing
approach reveals potential data races at run-time. How-
ever, RaceHunter needs to perform extra post-mortem
event trace analysis. Run-time analysis can scale better
if it consumes a bounded amount of memory, but the
active testing approach, presented in the paper [13], does
not satisfy this condition.

o RaceHunter does not control the thread scheduling at the
second stage (watchpoint analysis) except for one delay
to catch a data race, while the active testing approach
actively controls the thread scheduling, allowing one
random thread to execute at a time. Controlling the thread
scheduling slows down program execution significantly
and does not scale well, but it can help reproduce data
races, which is useful for debugging.

o RaceHunter adapts to OS kernels by supporting asyn-
chronous interrupts, while active testing does not support
interrupts because it does not provide mechanisms to
actively control the arrival of asynchronous interrupts at
the second stage.

o RaceHunter tries to accurately detect the target memory
access events at the watchpoint analysis stage via the
memory access descriptors containing various informa-
tion like the function call stack at the time of the event.
In contrast, the active testing approach identifies memory
access events by the instruction location only, but tries to
check nearly every instruction execution with the given
location for a data race. Which approach is more effective
for finding data races remains a topic for future research.
However, the active testing approach leads to excessive
delays, slowing down the program execution.

A variant of the active testing approach for distributed
memory concurrent programs [14] moves away from pure run-
time analysis on the first stage by activating analysis stages in
stationary states, which are organized by barrier operations. It
also moves away from full control over the execution schedule
of processes on the second stage by allowing processes to
run freely except for multiple delays applied for instructions
with the given location. Memory access instructions are still
identified by the instruction location only, which leads to
excessive delays. To improve performance and scalability, this

142

variant of the active testing approach gradually lowers the
probability of applying a delay for subsequent instruction
executions with the target location. However, reducing the
probability of applying a delay can lead to missed data races.

III. TESTS

RaceHunter is a dynamic data race detector that reveals data
races in real program executions. Thus, we had to develop
some tests to produce RTOS kernel executions. Our testing
approach is as follows. We manually develop a parameterized
test ¢, which is an ARINC-653 application consisting of a
number of ARINC-653 processes (threads) running in parallel.
We can think of test ¢ as a program with a set of formal
parameters P = {p1,...,p,}. Every thread calls some APEX
services that access shared objects in the RTOS kernel. Some
test parameters p; become actual parameters (arguments) of
these APEX services. Then we manually prepare a set of
values V; for every test parameter p;. Our goal is to address the
main functional requirements of the APEX services as defined
by the ARINC-653 standard.

The Cartesian product V = V; x V5 x ... x V,, gives us a
set of argument vectors for ¢(pq, ..., pn):

ay V1,1 Vin
14

Qv Ywi1 YValin

Calling the parameterized test t(p1, ..., p,) With an argument
vector a; gives us a single test case ¢(a;). A set of test cases
TS = {t(a1),...,t(ajy|)} produced for a single parameterized
test ¢ forms a single test suite.

Table I describes all the test suites that we have de-
veloped. The name of a test suite consists of a num-
ber of short alias names of APEX services separated by
a hyphen meaning that these APEX services are called
in parallel from different threads. For example, the test
suite name queuing_port-send-clear-get_status-get_id implies
that there are four threads in every test case running
in parallel and executing one and only one of these
APEX services: send_queuing_message, clear_queuing_port,
get_queuing_port_status, get_queuing_port_id. The number of
threads in every test case of a test suite (column Threads
in Table I) is two more than the number of threads we can
understand from the test suite name because there is one extra
initialization thread and there is one extra auxiliary thread
that starts and stops worker threads that actually call APEX
services.

IV. TESTING RESULTS

We have found two data races in the RTOS kernel and some
non data race bugs. This result confirms the ability of the
RaceHunter approach to find real data race bugs in industrial
operating systems.

Table II includes some statistics collected during testing.
Table columns have the following meaning. N is the test
suite number from Table 1. T} is the test suite execution time
without RaceHunter. 75 is the test suite execution time with

TABLE I
TEST SUITES

N | Test suite name Test cases | Threads
1 buffer-send-receive 192 4
2 | buffer-send-send 288 4
3 buffer-send-get_status-get_id 432 5
4 | blackboard-display-read 240 4
5 blackboard-display-display 200 4
6 blackboard—disp.lay—clear—clear 30 7

-get_status-get_id

7 queuing_port-send-receive 432 4

3 queuin g_port—re.ceive—clear 304 6
-get_status-get_id

9 sampling_port-write-read 270 4

10 | sampling_port-write-write 480 4

11 | sampling_port-write-get_status-get_id 540 5

RaceHunter. S = (T> — T1)/T; is the slowdown induced by
RaceHunter. V is the average trace size in kilobytes after the
monitoring stage of a test case. E is the average number of
events in a single test case run. / is the average number of
interrupts in a single test case run. G is the average number
of targets built by the trace analysis stage of a test case.

TABLE I
TESTING STATISTICS

N Ty T2 S A\ E I G
1 00:00:44 | 05:01:12 | 410 | 813 | 37302 | 26 | 171
2 | 00:00:50 | 07:10:35 | 515 | 805 | 36933 | 26 | 155
3 | 00:04:30 | 17:05:09 | 226 | 1120 | 51039 | 40 | 186
4 | 00:00:40 | 06:34:55 | 591 852 | 39043 | 31 | 142
5 | 00:00:33 | 06:01:32 | 656 | 874 | 39920 | 37 | 128
6 | 00:02:50 | 21:56:37 | 463 | 1596 | 72547 | 59 | 224
7 | 00:02:13 | 10:13:20 | 276 | 870 | 39890 | 26 | 144
8 | 00:03:13 | 14:42:58 | 273 | 1384 | 63070 | 41 | 223
9 | 00:00:15 | 02:51:12 | 683 | 721 33239 | 15 | 106
10 | 00:00:38 | 06:57:04 | 657 | 762 | 35046 | 19 | 107
11 | 00:02:06 | 11:38:55 | 332 | 1030 | 47039 | 26 | 152

V. LESSONS LEARNED
A. Performance

A weak point of RaceHunter is performance. The slowdown
fluctuates between 200 and 700 which is too high compared
to the industrial tools [7], [8], [10] that slow down execution
by 5-20 times.

The overall performance of RaceHunter is directly propor-
tional to the number of targets built by the trace analysis stage.
Therefore, the more accurate the post-mortem trace analysis,
the higher the performance. Implementation of post-mortem
lock-set analysis and post-mortem thread concurrency analysis
increased the performance of RaceHunter by more than an
order of magnitude.

143

We run all test suites in parallel to reduce the testing time
to the duration of the longest test suite. To achieve this, we
emulate the target hardware devices with QEMU [15] and run
them on multiple high-performance desktop computers (hosts).

B. Precision

RTOS actively uses synchronization primitives that are not
defined in the standard library of the programming language.
There are also synchronization operations in assembly code.
Happens-before-based data race detectors [10], [11] may give
false data race warnings when they don’t observe even one
synchronization event. In contrast, RaceHunter does not output
false warnings due to unobserved synchronization events,
because it catches data races at the time they really occur.
We did not receive any false data race warnings during this
case study.

C. Soundness

Data races can occur in certain states of the OS kernel that
are difficult to reach by simply calling a specific APEX service
and varying its arguments. To improve soundness, we should
apply some techniques aimed at the exploration of different
thread inter-leavings, like context switch bounding [16].

D. Scalability

Embedded operating systems like RTOS [1] are significantly
smaller than general purpose operating systems in code size
and the number of concurrent execution contexts. Therefore,
the number of events that occur during the execution of even
a simple test can be overwhelming. To scale the RaceHunter
approach to the general purpose operating systems we should
reduce the number of events saved in the trace without signif-
icant losses in the completeness of the analysis. To do this we
probably need to shift lock-set analysis and thread concurrency
analysis to the monitoring stage but without control over the
thread scheduling and over the arrival of interrupts.

E. Integration complexity

We believe it takes 4-5 man-months to integrate the Race-
Hunter tool into a new embedded OS or RTOS. Most of the
time is spent on the following:

o RaceHunter requires some functions to be implemented
in the OS kernel, e.g., a function that returns the identifier
of the current execution context.

o Some low-level OS kernel functions must be excluded
from instrumentation by manually marking them with a
special function attribute.

o Some OS kernel functions should be instrumented man-
ually, e.g., the thread creation function.

+ We needed to integrate RaceHunter feature into the OS
building process.

VI. CONCLUSIONS

A data race in the RTOS kernel can lead to the whole
system crashing. ARINC-653 safety features like time and
space partitioning do not protect from this kind of errors.

Careful testing according to the DO-178C standard using sin-
gle threaded tests can not guarantee the absence of data races
in the highly multithreaded kernel code. Therefore, special
data race detection tools like RaceHunter must be applied
in the secure software development life-cycle of ARINC-
653 compatible real-time operating systems and other safety-
critical software.

VII. DIRECTIONS FOR FURTHER RESEARCH

Development of tests for RaceHunter is a labor-intensive
process. Thus, the transformation of RaceHunter into a dy-
namic data race fuzzer is a promising future research direction.

We can speed up the watchpoint analysis stage by checking
each target in parallel rather than sequentially. We can also
parallelize the frace analysis algorithm.

REFERENCES

[1] V. Cheptsov, A. Khoroshilov, “Robust resource partitioning approach
for ARINC 653 RTOS”, Proceedings of 2023 Ivannikov Ispras Open
Conference (ISPRAS), pp. 33-39, 2023.

[2] RTCA, “Software Considerations in Airborne Systems and Equipment
Certification”, 2011.

[3] Aeronautical Radio Inc, “Avionics application software standard inter-
face part 1 required services. ARINC Specification 653P1-2”, 2005.

[4] S. Lu, S. Park, E. Seo and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics”,
Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems, 2008.

[5] ISO and IEC, “ISO International Standard ISO/IEC 9899:2024: Pro-
gramming languages - C”, 2024

[6] E.A. Gerlits, “RaceHunter Dynamic Data Race Detector”, Program-
ming and Computer Software, vol. 50, no. 6, pp. 467-481, 2024.

[71 M. Elver, et al, “Concurrency bugs should fear the big bad data-race
detector”, 2020. [Online]. Available: https://lwn.net/Articles/816850.

[8] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson, “Eraser:
A dynamic data race detector for multithreaded programs”, ACM
Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp. 391-411,
1997.

[9] T. Elmas, S. Qadeer, S. Tasiran, “Goldilocks: Efficiently computing

the happens-before relation using locksets”, Proceedings of the Inter-

national Workshop on Formal Approaches to Software Testing, pp. 193-

208, 2006.

K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detec-

tion in practice”, Proceedings of the Workshop on Binary Instrumen-

tation and Applications, pp. 6271, 2009.

C. Flanagan, S. Freund, “FastTrack: efficient and precise dynamic race

detection”, ACM Sigplan Notices, vol. 44, no. 6, pp. 121-133, 2009.

[12] C.J. Fidge, “Timestamps in message-passing systems that preserve the

partial ordering”, 1987.

K. Sen, “Race directed random testing of concurrent programs”,

Proceedings of the 29th ACM SIGPLAN Conference on Programming

Language Design and Implementation, pp. 11-21, 2008.

[14] C.-S. Park, K. Sen, P. Hargrove and C. lancu, “Efficient data race
detection for distributed memory parallel programs”, Proceedings of
2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis, pp. 1-12, 2011.

[15] F. Bellard, “QEMU, a fast and portable dynamic translator”, Proceed-
ings of the USENIX annual technical conference, FREENIX Track, vol.
41, no. 46, pp. 10-55, 2005.

[16] M. Musuvathi, S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs”, ACM Sigplan Notices, vol. 42, no.
6, pp. 446-455, 2007.

[10]

[11]

[13]

144

