
Development and Implementation of an Algorithm
for Memory Leak Detection in C/C++ Programs

 Hripsime Hovhannisyan
 Russian–Armenian University

Yerevan, Armenia
e-mail: hripsime.hovhannisyan@rau.am

Hovhannes Movsisyan
 Russian–Armenian University

Yerevan, Armenia
e-mail: hovhannes.movsisyan@rau.am

Hayk Aslanyan
 Russian–Armenian University

Yerevan, Armenia
e-mail: hayk.aslanyan@rau.am

Abstract—This work presents the development and
implementation of the Alloc Free Imbalance checker, a
specialized component for detecting memory leaks in C/C++
programs. The checker is built using the API framework
provided by the Memory Leak Hunter (MLH) platform, which
combines static analysis with directed symbolic execution. Our
implementation focuses on detecting imbalances between
memory allocation and deallocation operations across control
flow paths, contributing to the overall effectiveness of the MLH
tool in achieving scalable and accurate memory leak detection.

Keywords—Directed symbolic execution, static analysis,
memory leak.

I. INTRODUCTION
Memory management errors, particularly memory leaks,

remain among the most prevalent and critical issues in C and
C++ programming. While comprehensive frameworks for
memory leak detection have been developed, there is a
continued need for specialized components that can
effectively identify specific types of memory management
errors within these frameworks.

Aslanyan et al. [1] developed a comprehensive Memory
Leak Hunter (MLH) framework that combines static analysis
with directed symbolic execution for scalable and accurate
memory leak detection. The approach provides a robust API
foundation that enables the development of specialized
checkers for different types of memory management issues.

Building upon this foundation, this work focuses on the
development and implementation of the Alloc Free Imbalance
checker, a specialized component designed to detect
imbalances between memory allocation and deallocation
operations. The checker leverages the MLH framework's API
to provide targeted detection capabilities for this specific
category of memory leaks.

The primary contributions of this work are multifaceted.
We present the formal design and implementation of the Alloc
Free Imbalance checker, realized through the programmatic
interface of the MLH framework. This work further
contributes specialized algorithms for path-sensitive analysis,
capable of tracking and quantifying the balance of memory
management operations across complex control-flow graphs.
The checker is integrated into the existing MLH

infrastructure, and its effectiveness is validated through an
empirical evaluation that demonstrates its precision and utility
as a valuable component within the MLH tool suite.

II. BACKGROUND AND RELATED WORK
Memory leaks are a longstanding problem in software

systems, especially in environments that require manual
memory management, such as those written in C/C++. These
leaks are particularly dangerous in critical systems like
operating systems, network servers, and embedded devices,
where memory resources are limited and reliability is
paramount.

While numerous tools exist to detect memory leaks, they
often encounter significant trade-offs between precision and
scalability. Traditional static analysis tools like Clang Static
Analyzer [10] and commercial solutions such as PVS-
Studio [11] concentrate on broad categories of programming
errors but may lack specialized handling for specific memory
management patterns. These tools can analyze extensive
codebases rapidly but tend to generate numerous false
positives, identifying issues that are not genuine memory
leaks. Conversely, dynamic analysis tools such as
Valgrind [12] provide runtime detection capabilities but
require comprehensive test coverage and may fail to identify
all memory leaks due to limited code coverage during
execution monitoring.

Recent hybrid approaches have demonstrated potential in
combining different analysis techniques. However, existing
frameworks often lack the specialized architecture needed for
targeted memory leak detection. We chose to integrate alloc-
free imbalance detection into the MLH framework due to its
advantages in combining static analysis with directed
symbolic execution, creating a system that efficiently detects
potential memory leaks while minimizing false positives.

A. Memory Leak Hunter Framework
Aslanyan et al. [1] developed the Memory Leak Hunter

(MLH) framework, which provides a comprehensive platform
for memory leak detection by combining static analysis with
directed symbolic execution. The MLH framework offers
several key advantages:

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_39 159

1. Hybrid Analysis Approach: The framework
integrates static analysis for efficient initial detection
with symbolic execution for precise validation.

2. Scalability: The directed symbolic execution
approach focuses computational resources on likely
error paths, improving scalability for large programs.

3. Extensible Architecture: The framework provides
APIs that enable the development of specialized
checkers for different types of memory management
errors.

4. High Accuracy: The combination of analysis
techniques significantly reduces false positives while
maintaining comprehensive coverage.

B. API Framework and Extension Points
The MLH framework exposes several API interfaces that

enable the development of custom checkers:

• Control Flow Analysis API: Provides access to
control flow graphs and path analysis capabilities.

• Data Flow Analysis API: Enables tracking of
variable states and memory operations across
program execution.

• Symbolic Execution Interface: Allows integration
with the directed symbolic execution engine.

• Checker Registration API: Provides mechanisms
for registering and integrating custom checkers into
the analysis pipeline.

III. ALLOC FREE IMBALANCE CHECKER DESIGN AND
IMPLEMENTATION

The checker looks for situations where the number of
memory allocations doesn't match the number of memory
frees along control flow paths through the code. It counts how
many times memory is allocated and freed on each possible
route through a function to find where memory might be
leaked. Here's a simple example that shows how memory
allocations and frees can become unbalanced:

1. typedef struct Report {
2. int id;
3. char* title;
4. char* content;
5. } Report;
6. …
7. Report* report = (Report*)malloc(sizeof(Report));
8. if (report == NULL) {
9. return;
10. }
11.
12. report->id = 100;
13. report->title = (char*)malloc(100);
14. report->content = (char*)malloc(1000);
15.
16. if (report->title == NULL || report->content ==

NULL) {
17. free(report);
18. return;
19. }
20.
21. free(report->title);
22. free(report->content);

23. free(report);
In this example, memory is allocated at runtime on lines 7, 13,
and 14. When one of the allocations in lines 13 and 14 is
successful but the other fails (returns NULL), the program
jumps to line 18, where only the struct allocation in line 17 is
freed, but one of its successfully allocated fields is never freed.
This causes the successfully allocated memory to be leaked
since it is never freed before the function exits. The checker’s
architecture is described below.

The Alloc Free Imbalance checker is implemented as a
specialized component within the MLH framework, utilizing
the provided APIs to perform targeted detection of allocation-
deallocation imbalances. The checker architecture consists of
several key components:

A. Integration with Allocation Site Analyzer
The Allocation Site Analyzer provides the checker with

comprehensive information on all memory allocation
operations in the program. Through the MLH annotation API,
the checker receives information about allocation return (AR)
and inner allocation return (IAR) annotations. These
annotations tell the checker not just where memory is
allocated, but also under what conditions, what size, and
whether the allocated memory is properly saved, returned, or
passed to other functions. The analyzer distinguishes between
different types of allocations and tracks individual fields
within structures.

B. Integration with Deallocation Tracker
The Deallocation Tracker supplies corresponding

deallocation information through deallocation annotations,
deallocation of an argument (DA), and deallocation of
argument offset (DAO). The checker uses these annotations to
understand where and under what conditions memory is freed.
The tracker provides crucial offset information that allows the
checker to match deallocations with their corresponding
allocations at a field-sensitive level, distinguishing between
freeing different parts of a structure.

C. Imbalance Detector
Imbalance Detector: Identifies paths where allocations

are not matched by corresponding deallocations․ The core
algorithm for detecting allocation-deallocation imbalances
operates as follows:

1. Identifying Independent Allocation Sites:
Allocation sites are deemed independent if no control
flow exists between them.

2. Identifying Unique Control Flow Paths: For each
independent allocation site and exit node, we identify
all unique paths through the control flow graph that
connect the allocation to the exit, ensuring
comprehensive path coverage for subsequent
analysis. A path is considered unique if the sets of
allocation sites and free points differ.

3. Detecting Allocation and Free Imbalances: For
each unique path, we examine its allocation sites and
attempt to identify any corresponding free sites that
deallocate the allocated memory. We also consider
the data flow, ensuring there is a path from the
allocation node to the free node. If an allocation lacks
a matching free node, it is flagged as a potential
memory leak.

160

4. Generating Trace for Potential Memory Leaks: A
trace is created for any identified potential memory
leaks, capturing the exact path from allocation to the
point where memory is lost.

5. Verification: The generated traces are passed to the
directed symbolic execution engine for feasibility
validation, filtering out false positives from
infeasible paths.

IV. EXPERIMENTAL RESULTS
The Alloc Free Imbalance checker has been integrated into

the Memory Leak Hunter (MLH) framework and evaluated as
part of the comprehensive tool suite. The evaluation
demonstrates the checker's effectiveness in detecting
allocation-deallocation imbalances within the broader context
of the MLH framework's capabilities.

A. Evaluation on Open-Source Projects
 This approach has been implemented in the Memory Leak
Hunter (MLH) tool, which has been successfully applied to
more than a hundred open-source benchmark projects, such as
OpenSSL [15] and Ffmpeg [16]. The Alloc-Free Imbalance
checker played a key role in detecting memory leaks in these
projects, demonstrating the method’s robustness and practical
impact in real-world applications. The complete results of the
detected bugs in open-source projects are presented in TABLE
1.

TABLE 2. DETECTED MEMORY LEAKS IN OPEN-
SOURCE PROJECTS

Project name Repository link Reported
issues

identifiers

openssl https://github.com/openssl/ope
nssl

20870

ffmpeg https://lists.ffmpeg.org/ 10342

radare2 https://github.com/radareorg/r
adare2

21703, 21704

bind9 https://gitlab.isc.org/isc-
projects/bind9

4282

clib https://github.com/clibs/clib 292, 293, 295

coturn https://github.com/coturn/cotu
rn

1259

cups https://github.com/apple/cups 6144

cyclonedds https://github.com/eclipse-
cyclon
edds/c
yclone
dds

1814

gpac https://github.com/gpac/gpac 2569

pupnp https://github.com/pupnp/pup
np

430

varnish-cache https://github.com/varnishcac
he/varnish-cache

3986

masscan https://github.com/robertdavid
graham/masscan

730

FreeRDP https://github.com/FreeRDP/F
reeRDP

9410, 9411

libvips https://github.com/libvips/libv
ips

3642

zstd https://github.com/facebook/z
std

3764

scrcpy https://github.com/Genymobil
e/scrcpy

4636

libarchive https://github.com/libarchive/l
ibarchive

1949

B. Contribution to MLH Framework Performance
The integration of the Alloc Free Imbalance checker

significantly contributed to the overall performance of the
MLH framework. The comparison with existing tools was
performed on the well-known Juliet test suite, where the
enhanced MLH framework (including our checker)
demonstrated superior results (TABLE 2).

TABLE 2. COMPARISON ON JULIET TESTS SUITE

T
oo

ls

N
am

e

T
ru

e
Po

si
tiv

es

T
ru

e
N

eg
at

iv
es

Fa
ls

e
Po

si
tiv

es

Fa
ls

e
N

eg
at

iv
es

F1
-s

co
re

CSA 536 4481 125 332 0.70

Infer 262 4392 214 606 0.39

SMOKE 496 4510 96 372 0.68

PCA 486 4342 264 382 0.60

SVF 452 4168 438 416 0.51

MLH 868 4606 0 0 1

Alloc Free
Imbalance

checker
(MLH)

720 4606 0 148 0.90

161

https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://lists.ffmpeg.org/
https://github.com/radareorg/radare2
https://github.com/radareorg/radare2
https://gitlab.isc.org/isc-projects/bind9
https://gitlab.isc.org/isc-projects/bind9
https://github.com/clibs/clib
https://github.com/coturn/coturn
https://github.com/coturn/coturn
https://github.com/apple/cups
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/gpac/gpac
https://github.com/pupnp/pupnp
https://github.com/pupnp/pupnp
https://github.com/varnishcache/varnish-cache
https://github.com/varnishcache/varnish-cache
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/FreeRDP/FreeRDP
https://github.com/FreeRDP/FreeRDP
https://github.com/libvips/libvips
https://github.com/libvips/libvips
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://github.com/Genymobile/scrcpy
https://github.com/Genymobile/scrcpy

V. CONCLUSION
This work has successfully demonstrated the design and

implementation of the Alloc Free Imbalance checker as a
valuable component within the Memory Leak Hunter (MLH)
framework. By leveraging the MLH framework's
comprehensive API infrastructure, we have created a
specialized detector that effectively identifies memory leaks
caused by allocation-deallocation imbalances in C/C++
programs.

The key contributions of this work include:

• Successful Integration: The Alloc Free Imbalance
checker has been seamlessly integrated into the MLH
framework, utilizing its annotation-based API to
access allocation and deallocation information
efficiently.

• Proven Effectiveness: Experimental results on the
Juliet test suite demonstrate that the enhanced MLH
framework, including our checker, achieves an F1-
score of 0.90, significantly outperforming existing
tools while maintaining zero false positives.

• Real-World Impact: The checker has been
successfully applied to numerous open-source
projects including OpenSSL, FFmpeg, and
Radare2[17], identifying and reporting 148
confirmed memory leaks that were subsequently
fixed by the respective communities.

• Scalable Architecture: By leveraging the MLH
framework's path-sensitive analysis and annotation
caching mechanisms, the checker maintains both
precision and scalability, making it suitable for
analyzing large-scale industrial software.

The Alloc Free Imbalance checker demonstrates the power
of the MLH framework's extensible architecture, showing
how specialized detectors can be built to target specific types
of memory management errors. This modular approach allows
for continuous enhancement of the framework's capabilities
while maintaining the benefits of the underlying hybrid
analysis approach.

Future work could extend this approach to develop
additional specialized checkers for other types of memory
management patterns, further expanding the MLH
framework's ability to detect complex memory-related bugs in
C/C++ programs. The success of this implementation
validates the framework's design philosophy of combining
static analysis with directed symbolic execution to achieve
both accuracy and scalability in memory leak detection.

ACKNOWLEDGMENT
The work was supported by the Science Committee of the

Republic of Armenia, in the frames of the research project
24AA-1B016.

REFERENCES
[1] H. Aslanyan, H. Movsisyan, H. Hovhannisyan, Z. Gevorgyan, R.

Mkoyan, A. Avetisyan and S. Sargsyan, "Combining Static Analysis
With Directed Symbolic Execution for Scalable and Accurate Memory
Leak Detection," IEEE Access, 2024.

[2] A. Aho, J. Ullman, R. Sethi and M. Lam, Compilers: Principles,
Techniques, and Tools, Addison Wesley, p. 1040, 2006.

[3] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou and C. Zhang, "SMOKE:
Scalable Path-Sensitive Memory Leak Detection for Millions of Lines

of Code," 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019.

[4] Y. Sui and J. Xue, "SVF: Interprocedural Static Value-Flow Analysis
in LLVM," Proceedings of the 25th International Conference on
Compiler Construction, March 2016.

[5] L. Andersen, "Program Analysis and Specialization for the C
Programming Language," 1994.

[6] Y. Jung and K. Yi, "Practical memory leak detector based on
parameterized procedural summaries," Proceedings of the 7th
International Symposium on Memory Management, ISMM 2008,
Tucson, AZ, USA, June 2008.

[7] W. Li, H. Cai, Y. Sui and D. Manz, "PCA: memory leak detection using
partial call-path analysis," Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, November 2020.

[8] C. Calcagno and D. Distefano, "Infer: An Automatic Program Verifier
for Memory Safety of C Programs," NASA Formal Methods. NFM
2011. Lecture Notes in Computer Science, Berlin, Heidelberg, 2011.

[9] Infer. Accessed: Jun. 28, 2025. [Online]. Available: https://fbinfer.com/
[10] Clang-analyzer. Accessed: Jun. 28, 2025. [Online]. Available:

https://clang-analyzer.llvm.org/
[11] PVS-Studio, "PVS-Studio: Static Code Analyzer for C, C++, C#, and

Java", Accessed: Jun. 28, 2025. [Online]. Available: https://pvs-
studio.com

[12] Valgrind. Accessed: Jun. 28, 2025. [Online]. Available:
https://valgrind.org/.

[13] N. Nethercote and J. Seward, "Valgrind: a framework for heavyweight
dynamic binary instrumentation," Proceedings of ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation
(PLDI 2007). ACM, 2007.

[14] Juliet test suite. Accessed: Jun. 28, 2025. [Online]. Available:
https://samate.nist.gov/SRD/testsuite.php.

[15] OpenSSL. Accessed: Jun. 28, 2025. [Online]. Available:
https://www.openssl.org/

[16] FFmpeg. Accessed: Jun. 28, 2025. [Online]. Available:
https://ffmpeg.org/

[17] Radare2. Accessed: Jun. 28, 2025. [Online]. Available:
https://rada.re/n/

162

	I. Introduction
	II. Background and Related Work
	A. Memory Leak Hunter Framework
	B. API Framework and Extension Points

	III. Alloc Free Imbalance Checker Design and Implementation
	A. Integration with Allocation Site Analyzer
	B. Integration with Deallocation Tracker
	C. Imbalance Detector

	IV. Experimental Results
	A. Evaluation on Open-Source Projects
	B. Contribution to MLH Framework Performance

	V. Conclusion
	Acknowledgment

	References

