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Abstract—This paper presents a physics-informed neural
network (PINN) approach for solving the Richards equation,
which governs transient moisture transport in variably saturated
soils. The model is trained on synthetic datasets generated using
the porousMultiphaseFoam library based on OpenFOAM. The
study investigates the ability of PINNs to accurately reproduce
one- and two-dimensional infiltration dynamics and predict
moisture content profiles over time.
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I. INTRODUCTION

The Richards equation describes moisture transport in un-
saturated soils, linking hydraulic head and saturation through
nonlinear soil properties. Numerical solvers such as APSIM,
ParFlow and porousMultiphaseFoam (OpenFOAM) are widely
used to solve it.

Physics-informed neural networks (PINNs) embed these
governing equations in their loss functions, enabling physically
consistent learning. PINNs have shown success in fluid and
porous media modeling [1] and in soil-specific tasks such as
approximating the soil water retention curve [2-6], but their
hydrological applications remain limited.

This paper explores the use of PINNs for 1D and 2D infil-
tration problems based on the Richards equation, contributing
to the development of digital twin models in soil hydrology.

II. MATHEMATICAL MODEL

A. Darcy and Richards Equations

Darcy’s filtration law for liquids and gases, formulated in
1856 in differential form, applies only to saturated media. In
vector notation, it reads:

q = − K

µ
∇
(
ρgz + P

)
, (1)

where q is the vector of the filtration velocity, K – the intrinsic
permeability, µ – the dynamic viscosity, P – the fluid pressure,
ρ – the density, g – the gravitational acceleration and z – the

vertical coordinate. Introducing the hydraulic head h =
P

ρg
+z

yields the familiar form

q = −Ks ∇h, (2)

with Ks =
ρg

µ
K – the saturated hydraulic conductivity.

In 1931, Lorenzo Richards generalized Darcy’s idea Eq. (2)
and obtained the filtration law in its full form:
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(3)

where θ is the volumetric water content, the term
θSs

ε

∂h

∂t
represents the contribution of aquifer storage, kr,h is the
relative permeability, and Qsource is a source term.

Rewriting the governing equation in terms of hydraulic head
gives

C(h)
∂h

∂t
−∇

(
K kr,h ρ

µ

(
∥g∥2 ∇h− g

))
= 0, (4)

Here, C(h) is the capillary capacity and kr,h is the rela-
tive permeability. Both are expressed through the soil water
retention curve.

θ(h) =


θs − θr(

1 + (α|h|)n
)m + θr, h < 0,

θs, h ≥ 0,

(5)

and the effective saturation

θe =
θ(h)− θr
θs − θr

. (6)

With these definitions, the capillary capacity becomes

C(h) =
∂θ

∂t
=

αm(θs − θr)
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e

)(
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1
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, (7)

and the relative permeability is

kr,h =
√
θe

[
1−

(
1− θ1/me

)m]2
. (8)
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In these expressions, θs, θr are the saturated and residual
water contents, respectively; α, m are parameters of the van
Genuchten model, and θe is the effective saturation.

III. CAPABILITIES OF THE porousMultiphaseFoam LIBRARY

The porousMultiphaseFoam library, implemented in
OpenFOAM-v2306, provides a suite of solvers for saturated
and variably saturated flow, including coupled water solute
transport. It supports GIS-based preprocessing, scalar transport
for multiple species, and custom porous-media boundary
conditions.

All solvers have been validated against the benchmark
cases [7], [8], which confirms high accuracy. The main solver,
groundwaterFoam, uses implicit time stepping with the Picard
iteration. This makes the library suitable for generating syn-
thetic datasets for training physics-informed neural networks.

IV. PROBLEM SETUP

To solve the Richards equation, four contrasting soil types
were selected. The first three are from Russia: (1) a gray
forest medium loam from the Vladimir region with compacted
horizons and fissure-like pores; (2) a sod-podzolic loam from
the Moscow region with small biogenic channels and fine
cracking [9]; and (3) a Chernozem from the Central Altai
with granular structure and low bulk density [10]. The fourth
is a reference sandy loam from New Mexico, USA, with high
porosity and saturated hydraulic conductivity [11].

A. One-Dimensional Case
In the 1D scenario, the PINN takes (z, t) as input and

returns h(z, t). We model sandy loam from New Mexico using
boundary and initial conditions:

h(0, t) = −0.75 m, h(−0.6, t) = −10 m,

h(z, 0) = −10 m, z ∈ [0,−0.6].

The Richards equation is defined as:

pde(h) = − 1

95 000

[∂h
∂t

+
Kρ

95 000µC(h)

(
∂k(h)

∂z
(|g|∂zh− g) + k(h)|g| ∂2

zh
)]
.

(9)

The time domain [0, 95,000 s] is scaled to [0,1]. Soil
properties: K = 9.4 × 10−12 m2, θs = 0.368, θr = 0.102,
α = 3.35m−1, m = 0.5, µ = 10−3 Pa s, ρ = 103 kg m−3.

B. Two-Dimensional Case
In the 2D case, the input becomes (x, z, t). The governing

PDE extends to spatial derivatives in x:

pde(h) = − 1

95 000C(h)

{
C(h) ∂th

−∇ ·
(
K(h)k(h)

µ
[ρ|g|(∂xh+ ∂zh)− ρg]

)}
(10)

An isotropic medium with constant permeability (from Ks)
is assumed. The parameters for all four soils are listed in
Table I, including htop in z ∈ (0.2, 0.3), hbot in z = −0.6,
and h0 = h(z, 0).

TABLE I: Hydro-physical parameters and boundary/initial
conditions for four soil types

Sandy
loam

Cherno
zem

Sod-
podzolic

Grey
forest

Ks (m s−1) 9.22× 10−5 1.02× 10−5 3.47× 10−6 9.49× 10−6

θr 0.102 0.0354 0.034 0.075
θs 0.368 0.459 0.45 0.47
α (m−1) 3.35 0.54 1.6 0.7
n 2.0 1.5362 1.37 1.6
htop (m) −0.75 −0.5 −0.5 −0.5

hbot (m) −10 −2.8 −3.6 −3.2

h0 (m) −10 −2.8 −3.6 −3.2

V. PINN ARCHITECTURE

Using the Python scientific machine-learning library Deep-
XDE, a fully connected neural network was built to solve the
Richards equation in one dimension [2]. The network contains
three hidden layers with 20 neurons each (Figure 1).

For the two-dimensional case, the PINN takes the vector
(x, z, t) as input and outputs the hydraulic head h. The fully
connected network consists of five layers with 50 neurons each
(Figure 2). The other parameters are in Table II.

TABLE II: Model parameters
Case Layers Neurons Activation Optimiser Learning rate
1D 3 20 Tanh Adam 10−3

2D 5 50 ReLU Adam 10−3, 10−4

VI. RESULTS

A. One-Dimensional case

After 100,000 training epochs, the network produces the
hydraulic head profiles shown in Fig. 3(a). The reference
solution obtained with porousMultiphaseFoam is shown in
Fig. 3(b).

Fig. 1: PINN architecture for the 1D case

Fig. 2: PINN architecture for the 2D case
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(a) PINN solution for the
1D problem at three time
instants

(b) Reference solution obtained
with porousMultiphaseFoam

Fig. 3: Comparison of (a) PINN and (b) reference solutions
for the 1D case

Incorporating a small subset of numerical data from porous-
MultiphaseFoam in the training process reduces the mean
squared error (MSE) to 9.6×10−3 after 16,000 epochs. Here,
a calculation was performed for 1,000 seconds. The results
of the comparison between the calculated solution and the
PINN-based approximation for the function h are presented in
Figure 4. Judging by the results obtained, PINN has indeed
learned to approximate the solution obtained by the numerical
method very closely; however, it is notable that the greatest
discrepancies in the results were reached when approximating
the values at the lower bound. The behavior of the MSE metric
during the training process is shown in Figure 5.

(a) t = 100 s (b) t = 500 s

(c) t = 900 s

Fig. 4: PINN predictions of hydraulic head in the 1D setting
at different time steps

Fig. 5: MSE for the 1D case

B. Two-Dimensional case

In the 2D isotropic formulation, a deeper network trained
with stepwise learning rate decay reproduces the head dynam-
ics over a wide permeability range. Training was carried out
for 40,000 epochs with an initial learning rate of 10−3; the
rate was reduced by one order after the first 20,000 epochs.
The loss history plots are presented in Fig. 6.

As shown in Fig. 7, the gray forest soil develops a smooth
saturation gradient - the wetting front is diffuse and gradually
fades with depth, matching its high matrix porosity and water
holding capacity. In sod-podzolic soil, water infiltrates much
more efficiently because of its lower bulk density, producing
a steeper but still continuous front. The Chernozem displays a
sharply defined wetting boundary: water is quickly absorbed
from above and then held back by the fine-pored organo-
mineral matrix, so the front stalls and remains compact. Sandy
loam soil in New Mexico is the most rapidly and deeply
moistened of all samples: the coarse pore skeleton conducts
water rapidly downward, giving the profile a sudden jump in
water content and leaving little moisture stored in the matrix.

Fig. 6: Loss history plots for considered soil types
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(a) Gray forest (b) Sod-podzolic

(c) Chernozem (d) Sandy loam

Fig. 7: Saturation fronts at t = 28 500 s in the 2D isotropic
setting for four soil types

VII. DISCUSSION

PINNs show promise, but several gaps remain. (1) We
used only a fully connected architecture; operator-learning
models such as DeepONet [12] and FNO [13] merit evaluation.
(2) Hyperparameters (learning rate, depth/width, optimizer)
were not tuned; automated HPO (e.g., Optuna) should be
applied. (3) Realistic digital twins require a 3D Richards
formulation. (4) Robust benchmarking needs quantitative com-
parisons against data-driven and physics-informed baselines.
Addressing these items will improve robustness and practical
utility in geoscience and agro-environmental applications.

VIII. CONCLUSION

Several neural-network approaches to solving the Richards
equation have been explored, and the DeepXDE library has
been tested to train PINNs [2]. The analysis shows that the
highest accuracy is achieved when synthetic data are included
in the training process.

To train PINN, the NVIDIA Tesla T4 GPU was used. It
is a powerful graphics accelerator with 16 GB GDDR6 video
memory. The training process for each case took about 2.5
minutes.

Comparing the PINN 1D predictions with porousMulti-
phaseFoam results reveals that the baseline PINN correctly
reconstructs the shape of the wetting front, while incorporating
synthetic data yields quantitative agreement with the classical
solution. These findings highlight the potential of PINNs
for studying multidimensional soil processes and parameter-
uncertain problems, confirming their suitability for use in
digital twins of agro-systems to provide rapid forecasts of

soil-water regimes. Having a number of soil parameters, it is
possible to assume the nature of the moisture seepage process.
For example, the Ks parameter is a key parameter for the
seepage rate, and α is a suction parameter that determines the
water retention curve (the lower α, the slower drying). The
results of the PINN simulation for the 2D case show results
consistent with the initial assumptions:

1) In the Gray forest soil, moisture is evenly distributed,
penetrates deeply, but slowly;

2) Sod-podzolic soil is similar in properties to gray forest
soil, but has better suction properties;

3) In Chernozem, moisture spreads deeper and lasts longer.;
4) In Sandy loam, water moves quickly, but does not linger.
Future work may focus on evaluating alternative network

architectures – such as DeepONet and Fourier Neural Oper-
ators – and on integrating PINNs with various mathematical
models to further investigate soil processes.
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